
 
 
 
 
 
 
 

Getting Started 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Version 1  



Getting Started 
with OpenZinc Programming 

OpenZinc Application Framework 
Version 1.0 



Copyright © 1990-1994 Zinc Software Incorporated 
Permission is granted to copy, distribute and/or modify this document 
under the terms of the GNU Free Documentation License, Version 1.3 
or any later version published by the Free Software Foundation; 
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 
A copy of the license is included in the section entitled "GNU 
Free Documentation License". 



Preface XXV 

What is OpenZinc ? xxvii 

What you need to write OpenZinc programs 

System requirements xxvii 
The manuals xxviii 

Programmer's Reference xxviii 

Getting Started xxix 

OpenZinc Designer xxix 
Conventions used in this book xxxi 

Getting Started with OpenZinc Programming v 



section one OpenZinc concepts 

1 Installing OpenZinc 3 

how to install OpenZinc in your operating environment 

Safety first... 3 

DOS, Windows, and OS/2 4 

Run the installer program 4 
Select a drive and subdirectory 4 
Select the package option 4 
Install OpenZinc 5 

Macintosh 5 

Run the installer program 5 
Choose an installation 5 
Specify an installation folder 6 
Install OpenZinc 6 
Make aliases 6 

OSF/Motif and Unix Curses 6 

Extract OpenZinc 7 
Run the installation script 7 

NEXTSTEP 8 

Extract OpenZinc 8 
Load the package 8 

Finished! 9 

vi Getting Started with OpenZinc Programming 



2 Introduction to OpenZinc 11 

what OpenZinc is 
what OpenZinc's components are 
how OpenZinc benefits us 

An object-oriented solution 12 
Transition to C++ 13 
The benefits of OpenZinc 14 

OpenZinc: an application framework 15 

The Event Manager 18 
UI_DEVICE and abstract classes 19 
Event mapping 20 
Benefits of logical event mapping 20 

The Window Manager 21 
'Top down" and "bottom up" 21 
Window position and priority 22 
Native objects, not emulated 22 

The display 23 

The help and error systems 24 

Storage and retrieval 25 

Globalization 26 
The obstacles to reaching the global market 26 
ISO 8859-1 and Unicode 26 
Language and locale 26 
Delta storage 27 

Geometry management 28 

Printer support 28 

Conclusion 28 



3 Window Objects 29 

the different types of window objects 
how window objects work 

viii Getting Started with OpenZinc Programming 

OpenZinc's window objects 30 
Basic window objects 30 
Buttons 31 
Combo boxes 32 
Dates 33 
Geometiy management 35 
Icons 35 
Lists 35 
MDI windows 36 
Menus 36 
Notebook 37 
Numbers 37 
Scroll bar 38 
Slider 39 
Spin control 39 
Status bar 39 
String fields 40 
Table 41 
Text 41 
Time 42 
Tool bars 43 
Other programmer-defined window objects 43 
Editing window objects 44 

Conclusion 44 



4 Writing Multiplatform Programs 45 

About multiplatform programming in OpenZinc 46 
Single source 46 
Engines and keys 46 
Look and feel 46 
Libraries 46 
Compiler options 47 
Main() 47 
Event handling 47 
Executable naming conventions 48 
Shipping applications 49 

DOS 49 
Look and feel 49 
DOS libraries 49 
Compiler options 49 
main() 50 

Windows 50 
Look and feel 50 
Windows libraries 50 
Compiler options 50 
WinMain() 51 

OS/2 52 
Look and feel 52 
OS/2 libraiy 52 
main() 52 

Macintosh 52 
Look and feel 52 
Macintosh libraries 52 
main() 53 



X Getting Started with OpenZinc Programming 

OSF/Motif 53 
Look and feel 53 
OSF/Motif libraries 53 
main() 54 
Shipping applications 54 

Curses 54 
Look and feel 54 
Curses libraries 54 
main() 55 

NEXTSTEP 55 
Look and feel 55 
NEXTSTEP library 55 
main() 55 
Event handling 55 

Conclusion 56 

5 Event Flow and Mapping 57 

top-down and bottom-up event handling 
event map tables 
palette mapping 

Top down 58 

Bottom up 60 

Event processing 62 

Event map table 64 
Event mapping algorithm 65 
Palette mapping 65 

Conclusion 67 



6 Library Classes 69 

Base classes—OpenZinc's periodic table 70UI_ELEMENT 72 
UI_LIST 72 

Event Manager 73 
Input devices 73 
The event queue 74 

Window Manager75 

Window objects 75 
Event member functions 76 

Help system 77 

Error system 78 

Screen displays 78 
Region lists—DOS and Curses 79 
Virtual display functions 81 

Conclusion 81 

7 OpenZinc and C+ + 83 

instantiating and destroying objects 
member variables and scope 

member functions, overloaded functions and operators 



xii Getting Started with OpenZinc Programming 



8 Globalization 105 

Getting Started with OpenZinc Programming xiii 

enabling a OpenZinc program 
how to use ISO 8859-1 and Unicode characters 
shipping a globalized application 

Enabling OpenZinc objects 106 
Enabling objects 106 
Character types 107 
Using wide character strings 107 

Localizing our application 108 
Localizing OpenZinc objects 108 

Localizing our objects 109 
Detecting the language 109 
Detecting the locale 110 
Building our application 110 

Shipping our application 110 
Non-Unicode applications 111 
Required files for Unicode applications 111 

Conclusion 111 



section two OpenZinc programming 

9 "Hello, Universe!" 115 

Using UI_APPLICATION 
Learning to write a simple OpenZinc application 
Shutting down an application 

What we'll do 116 
Include files 117 
A new M a i n ( ) 119 
Creating a window and adding a text field 120 
Responding to events 121 

Under the hood ofUI_APPLICATION::Main( ) 121 
What U I _ A P P does 122 

M a i n ( ) 122 
Event flow and Control( ) 123 
HELLO1.CPP without UI_APPLICATION 124 

The Event Manager 124 

Shutting down H E L L O 1 . C P P 125 
Conclusion 125 

xiv Getting Started with OpenZinc Programming 



10 Help and Error Systems 127 

Using OpenZinc's help and error systems 
Writing an exit function 
Creating user interfaces programmatically 

The help system 128 

The error system 133 
Control flow of the error system 133 
Exit function 134 
Multiple windows 135 
Program flow 138 
Cleanup 138 

Conclusion 138 

11 Using the Designer 139 

Working with persistent objects 
Creating user interfaces with OpenZinc Designer 

What well do 140 

Using the Designer 141 
Creating a file 141 
Creating a window 142 
Creating a window object 144 
Creating additional windows 145 
Saving the file 147 
Window access 148 
Run-time features 148 

Conclusion 149 



12 Event flow 151 

working with top-down and bottom-up event flow 
writing a user function to validate input 

What we '11 do 152 
Running the program 152 
Source code 152 
Class definitions 153 

Creating the window 155 
The user function 157 

Following events 158 
Event flow—DOS 159 
Event flow—Windows 160 

Conclusion 161 

13 The OpenZinc Data File 163 

the data file 
adding and deleting objects to and from the data file 

What we'll do 164 
Running the program 164 
Source code 165 
Program flow 165 
Class definitions 166 

Creating the user interface 168 
Using the Designer to create the window 168 

DICTIONARY_WINDOW 169 

xvi Getting Started with OpenZinc Programming 



Wiring up the interface 169 
The Event() function 169 

The D_ENTRY class 170 
ZIL_STORAGE_OBJECT 170 
The constructor 170 
The New function 170 
The Save function 170 

The DICTIONARY class 171 

Conclusion 172 

14 Virtual List 173 

creating a virtual list 
using the UIW_TABLE class 

What we'll do 174 
Running the program 174 
Source code 175 
Analyzing the source code 175 
Program flow 177 

Using the UIW_TABLE object 177 
Table structure 177 
The table record 178 
The table header 178 
Adding records to the list 179 
Adding fields to the records 179 
Getting the data into the fields 180 

Conclusion 182 

Getting Started with OpenZinc Programming xv ii 



15 Deriving a Device 183 

how to work with input devices 183 
how to write a simple keyboard macro 183 
how to initialize the macro device class & its base class 

What we'll do 184 
Source code 184 
Program execution 184 
Class definitions 185 
Program flow 186 
Base class initialization 188 
Initializing member variables 189 
The Poll() function 190 
Responding to events 191 
Enhancements 191 

Conclusion 192 

16 Customized Displays 193 

the basics of designing of a display class 
initializing the display class and its base class 
giving a display class custom behavior 

What we'll do 194 
Using the class 194 
Source code 194 

Writing UI_BGI_DISPLA Y196 
Initializing the base class 196 
Initializing UI_BGI_DISPLAY 197 

Getting Started with OpenZinc Programming 



Display destructor 199 

The Rectangle( ) function 199 
Drawing on the screen 199 
Information member functions 201 

Conclusion 202 

17 Using Locales 203 

detecting the system locale 
setting an object's locale 

What we'll do 204 
Running the program 204 
Source code 205 
Analyzing the source code 205 
Program flow 208 

REPORT_WINDOW 208 
Wiring up the interface 208 
Changing locales 209 

Conclusion 210 

18 Using Languages 211 

detecting the system language 
setting the application language 

What we'll do 212 
Running the program 212 

Getting Started with OpenZinc Programming xix 



Source code 213 
Analyzing the source code 213 
Program flow 215 

REPORT_WINDOW 215 
Wiring up the interface 215 
Changing languages 216 

Conclusion 217 

19 Program Design 219 

design of a large application 
using event map tables 
using accelerator keys 

What well do 220 
Source code 220 
Program specification 221 

Design and implementation 222 
Accelerator keys 225 
General program flow 227 

Control 229 
Control program flow 231 

Display options 233 
Display program flow 234 

Window options 239 
Window program flow 241 

Event options 246 
Event program flow 247 
Monitoring library events 250 
The event monitor 251 

X X Getting Started with OpenZinc Programming 



The ZincApp window manager 256 

Help options 258 
Help program flow 260 
General library help 264 

Structured programming—in a word, don't 264 

Conclusion 267 

appendices 

A Compiler Considerations 269 

Borland 271 
Makefiles—DOS, Windows, OS/2 271 
Borland 4.0 IDE—DOS, Windows 272 
Borland 1.5 IDE—OS/2 272 

Microsoft 273 
Makefiles—DOS, Windows 273 
Visual Workbench—DOS, Windows 273 

Symantec 274 
Makefiles—DOS, Windows 274 
Symantec 6.1 IDDE—DOS, Windows 275 

Wat com 275 
Makefiles—DOS, Windows, OS/2 275 
Watcom 10.0 IDE—DOS, Windows, OS/2 276 

IBM 276 
Makefiles—OS/2 276 

Getting Started with OpenZinc Programming xx i 



WorkFrame/2 277 

Macintosh 277 
THINK Project Manager (TPM) 277 

Motif 278 

Curses 279 

NEXTSTEP 279 

B Example Programs 281 

Callbacks 281 
VALIDT 281 

Drawltem 282 
ANALOG 282 
GRID 284 
GRAPH 285 
DISPLY 285 
LSTITM 286 

Event and palette mapping 287 
CALC 287 

CALNDR 288 
Get/setdata 289 

PHONBK 289 
WINDOW 289 
POSTWN 290 
NOTEBK 290 
STATUS 290 
MENUS 291 
SPREAD 292 
AGENCY 292 

I18N 294 
I18N 294 

Getting Started with OpenZinc Programming 



DELTA 295 

Messages 296 
MESSGS 296 
MATCH 296 
WORLD 297 

Miscellaneous 297 

FRESTR 297 

DRAG 298 

SPY 299 

COORDS 300 

FONTS 300 

COLORS 301 
New objects 301 

GMGR301 
PRINTR 303 
SPIN 305 
MDI 306 
PERIOD 307 
TABLE 307 
MSGWIN308 

C OpenZinc Coding Standards 311 
Naming 312 

Classes and structures 312 
Functions 312 
Variables 312 
Constants 313 

Organization 313 
Class scopes 313 
Files 314 

Comments 315 

Getting Started with OpenZinc Programming xxiii 



Files 315 
Functions 315 
Variables 315 
Blocks 315 

Indentation 316 
Classes and structures 316 
Functions 317 
Function calls 317 

Case statements 318 

If and for statements 318 

D Keyboard and Mouse 
Mappings 319 

DOS and Windows 320 

OSF/Motif and Curses 323 

Macintosh 325 

NEXTSTEP 326 

Getting Started with OpenZinc Programming 



Preface 

if you want to learn to program using OpenZinc, this manual is for you. 

This book teaches programmers how to write robust programs using OpenZinc 
Application Framework, the advanced object-oriented development environ-
ment that runs under nearly every popular operating environment in the 
world. 

OpenZinc's mission is to help programmers write object-oriented, graphical, 
event-driven programs that are portable across operating systems, CPU 
architectures, and languages and locales. Programmers often must deal with 
issues like writing programs that run under multiple environments, or use 
unrelated display technology, or that show text and data formatting in multi-
ple languages like English, German, and Japanese. By design, OpenZinc makes 
writing these programs far easier. But to achieve this, OpenZinc had to become 
different from other programming environments—and this difference means 
the programmer who is just starting out with OpenZinc faces the prospect of 
learning something new. 

Getting Started with OpenZinc Programming X X V 



Preface 

No other book before this one explained to novice OpenZinc programmers how to 
write a OpenZinc program step by step. Though programmers who used other 
environments found OpenZinc's reference manuals invaluable for their depth of 
information, the programmer just starting out with OpenZinc found it hard to learn 
the core principles of writing OpenZinc programs only through following the tuto-
rial. Therefore we designed this book to help the novice OpenZinc programmer 
get up to speed with maximum speed and efficiency—and with a minimum 
of intimidation. 

Since this book was designed to help the programmer who is just starting out 
with OpenZinc, we will occasionally cover a subject in less detail than more 
expert programmers would prefer. We encourage OpenZinc masters to look to our 
Reference Manual for more detail. 

Things we've left out altogether are in-depth discussions about object-ori-
ented programming, programming in C++, and operating systems. Although 
we don't expect you to be an expert C++ programmer, we do expect that you 
have some knowledge and understanding of object orientation and C++ 
before you start this tutorial. 

To teach you the conceptual framework of writing OpenZinc programs, we start 
out with one of the smallest programs possible. After, we introduce more 
complicated, though still easy to understand, example programs, designed to 
teach specific OpenZinc features and benefits. This approach offers an opportu-
nity to understand how every line of code works and fits together—and why 
OpenZinc is a wonderful choice for writing applications with graphical interfaces 
that run under multiple operating environments, languages, and locales. 

While you learn how to write OpenZinc programs, you'll also learn some key 
principles important to how OpenZinc accomplishes its mission of portability. 
Each chapter will emphasize one of these key principles to keep you focused 
on learning that principle well. Later on, you can generalize these principles 
to help you write any program with OpenZinc. 

By the end of this book, you will know enough about OpenZinc to use it on your 
own. But you'll probably want to refer back to this manual from time to time 
to refresh your memory about how to accomplish a specific task 

xxv i Getting Started with OpenZinc Programming 



What is OpenZinc? 

OpenZinc is an application framework that programmers use to write object-ori-
ented, graphical, event-driven programs that are portable across operating 
systems, CPU architectures, and languages and locales. 

But more than a mere set of tools, OpenZinc is also an architecture, or a coherent 
structure that follows a set of design principles. OpenZinc discusses these design 
principles in detail in the first part of this manual. Briefly, however, in its 
classes and member functions, OpenZinc uses specific design principles of event-
driven architecture, object orientation, portability, and flexibility. OpenZinc pro-
grams that use these classes and follow these principles benefit by how eas-
ily they port to different operating systems and CPU architectures, and how 
flexibly they adapt to different languages and locales. 

As we learn to write OpenZinc programs, OpenZinc's intuitive design will stand out 
more and more—indeed, you will be able to anticipate how features of OpenZinc 
will work without having used them. This quality is what makes OpenZinc attrac-
tive to so many programmers around the world. 

What you need to write OpenZinc programs 
Writing OpenZinc programs means purchasing a OpenZinc Engine and a Key for the 
target operating environment. You will also be required to have a supported 
compiler for that environment. 

System DOS text and DOS graphics. To write OpenZinc programs for DOS in real mode, 
requirements you need a OpenZinc Engine and DOS Key; a C++ compiler for DOS such as the 

Borland C++, Microsoft C++, or Symantec C++ compiler; DOS 3.1 or later; 
and a Microsoft mouse-compatible driver. To write OpenZinc programs for DOS 
Text and DOS Graphics in protected mode, you need the above as well as a 
DOS extender SDK. See the READ.ME file for a list of currently supported 
DOS extenders. Most "real-world" applications will require a DOS extender. 

Getting Started with OpenZinc Programming xxvii 



Preface 

Windows. OpenZinc Engine and Windows Key; a C++ compiler for Windows 
such as the Borland C++, Microsoft C++, or Symantec C++ compiler; and 
Windows 3.0 or later. To develop applications for Windows NT you need a 
OpenZinc Engine and Windows Key; and a C++ compiler for Windows NT, such 
as the Borland C++, Microsoft C++, or Watcom C++ compiler. 

OS/2. OpenZinc Engine and OS/2 Key, a C++ compiler for OS/2 such as the Bor-
land C++, IBM C++, or Watcom C++ compiler, and OS/2 2.0 or later. 

Macintosh. OpenZinc Engine and Macintosh Key, a C++ compiler for the Macin-
tosh such as the Symantec C++ compiler, and Macintosh System 7 or later. 

OSF/Motif. OpenZinc Engine and Motif Key, a C++ compiler compatible with 
AT&T's cfront version 2.1, and OSF/Motif 1.1 or later running on XI1R4 or 
later. You may need to change some source code to use the Motif Key on 
hardware platforms that are not directly supported by OpenZinc. Though OpenZinc 
makes no claim that OpenZinc programs written for a version of OSF/Motif not 
directly supported by OpenZinc will work properly, doing so should be straight-
forward. 

Unix Curses. OpenZinc Engine and Curses Key, and a C++ compiler compatible 
with AT&T's cfront version 2.1. 

NEXTSTEP. OpenZinc Engine and NEXTSTEP Key; and NEXTSTEP 3.2 User 
and Developer editions or later, which come with the required compiler. 

The manuals 

Programmer's The Programmer's Reference is comprised of two volumes. 
Reference 

The Programmer's Reference Volume 1 contains descriptions of OpenZinc Appli-
cation Framework support classes, the calling conventions used to invoke 
the class member functions, short code samples using the class member 
functions, and information about other related classes or example programs. 
Support objects are those objects that are not window objects. 

xxviii Getting Started with OpenZinc Programming 



The Programmer's Reference Volume 2 contains descriptions of OpenZinc Appli-
cation Framework window object classes, the calling conventions used to 
invoke the class member functions, short code samples using the class mem-
ber functions, and information about other related classes or example pro-
grams. 

Some miscellaneous information is presented in the Appendices of Pro-
grammer's Reference Volume 2. This section (Appendices A through I) con-
tains support definitions, system event definitions, logical event definitions, 
class identifications, storage information, internationalization information, 
and some hardware issues. 

Getting Started Getting Started contains a general overview of OpenZinc's architecture in addi-
tion to a series of tutorials designed to help us learn how to write OpenZinc pro-
grams. 

If you're a OpenZinc novice, or if you're a beginning or intermediate C++ pro-
grammer, you should probably begin at the beginning of this book and learn 
what the pieces of OpenZinc are and how they fit together. If you've already 
learned about OpenZinc, or if you have extensive experience with C++, you may 
want to start with "Section Two—OpenZinc Programming," which teaches you 
how to write many different OpenZinc applications. 

OpenZinc Designer OpenZinc Designer contains an overview of the principles of OpenZinc's interactive 
interface design tool, in addition to feature-by-feature explanations of OpenZinc 
Designer's functionality. 

Getting Started with OpenZinc Programming xx ix 



Conventions used in this book 
This m a n u a l uses the f o l l o w i n g conven t ions : 

TABLE 1. C o n v e n t i o n s 

Italics identify arguments, variables, and pointers in function and 
method prototypes. 

Bold identifies file and directory names, and OpenZinc class and member 
function names. 

Constant identifies programming examples and command line or shell 
width output. 
text 
c : is the command line DOS prompt, which you can access from 

inside Windows 

Getting Started with OpenZinc Programming xxxi 



Preface 

xxviii Getting Started with OpenZinc Programming 



section one 
OpenZinc concepts 

Getting Started with OpenZinc Programming 1 



Getting Started with OpenZinc Programming 2 



Installing OpenZinc 

This chapter explains how to install OpenZinc for all its supported operating 
environments. Refer to this chapter for instructions on how to ensure OpenZinc's 
components are installed correctly. Also, refer to the appropriate section for 
your operating environment for installation instructions. 

Safety first. . . Before actually installing OpenZinc Application Framework, back up your distri-
bution disks. 

Getting Started with OpenZinc Programming 3 



Installing OpenZinc 

DOS, Windows, and OS/2 
Installing OpenZinc on a DOS, Windows, or OS/2 system takes five steps: 

Run the installer 1. Run the installer program. 
program The install program is a DOS executable, and should be run from DOS or 

a DOS window in OS/2, Windows, or Windows NT. 

Insert into your floppy drive the first OpenZinc Engine diskette. Then run the 
OpenZinc 4.0 Installer on the diskette by typing the following: 

A: INSTALL 

Select a drive 2. Select a drive and an installation subdirectory. 
and subdirectory Select the hard drive on which to install OpenZinc. Then, on that hard drive, 

select an installation subdirectory. Press <Enter> to accept the default 
directory, \OpenZinc, or type in a new directory and press <Enter>. 

Select the 3. Choose OpenZinc engine and key(s). 
package option The following is a list of diskette packages you need to use OpenZinc on your 

computer 

Required 

• OpenZinc Engine 

Optional 

• DOS Key 

• Windows Key 
• OS/2 Key 

4 Getting Started with OpenZinc Programming 



Install OpenZinc 4. Install OpenZinc. 
The program installs OpenZinc from the distribution floppies to your hard 
drive and displays its progress on the screen. Periodically, it will prompt 
you for a new disk. Remove the current disk from the drive, insert the 
appropriate new disk, and press any key to continue the installation. 
When the process is complete, a message appears on your screen indicat-
ing that OpenZinc Application Framework has been successfully installed. 

Macintosh 

Run the installer 1. Run the installer program. 
program Insert into your floppy drive the first OpenZinc Macintosh Key diskette. Then 

run the OpenZinc 4.0 Installer icon on the diskette. After reading the 
README file, select "Continue." 

ChOOSe an 2. Choose an installation. 
installation Choosing "Install" installs the entire OpenZinc Application Framework pack-

age. If you choose the default OpenZinc installation, skip to the next step. 

Choosing "Custom" allows you to specify only those components of 
OpenZinc Application Framework you wish to install. You can select the 
entire OpenZinc Application Framework by choosing "OpenZinc Application 
Framework 4.0 (All)," or you can select from a range of options by click-
ing on the first option in the range, and then, while holding the <Shift> 
key on the keyboard, clicking on the last option in the range—this will 
select all options between them. Then choose "Install" after you have 
selected the desired components. 

Getting Started with OpenZinc Programming 5 



Installing OpenZinc 

OSF/Motif and Unix Curses 
Installing OpenZinc on an OSF/Motif or Curses system, takes three steps: 

6 Getting Started with OpenZinc Programming 

Specify an 4. Specify where to install OpenZinc Application Framework. 

installation The Symantec project manager requires that you install OpenZinc in the same 
folder that contains the Symantec THINK Project Manager. If you wish 

to install OpenZinc Application Framework into a folder with a name 
other than the default, enter the new name in the field provided. 

Install OpenZinc 5. Begin installation of OpenZinc. 

Choose "Save" to begin installing the files. 

When installation is complete, you may install OpenZinc in another location, 
or you may simply quit. 

Make aliases 6. Make aliases. 
The Symantec compiler needs to know how to locate OpenZinc files when 
compiling. Make aliases of the SCCPP700 Include folder, located in the 
Include folder, and of the SCCPP700 Library folder, in the Library 
folder. Move these aliases to the Aliases folder within the Symantec C++ 
folder. 

Installation is now complete. You may wish to precompile OpenZinc's header 
files, which will speed up compile time considerably. To do so, refer to 
the file MAC.TXT, included in the Read Me Files folder in the OpenZinc 
directory now installed on your hard drive. 



Extract OpenZinc 1. Extract OpenZinc from distribution media. 

Copy the OpenZinc distribution to your system by following the appropriate 
instructions in one of the sections below. The examples below will place 
the OpenZinc distribution in /usr/local/OpenZinc. 

a. Installing from tape. To install OpenZinc from a tape, change directory to 
the installation directory. Use the tar command to extract the contents of 
the tape. For example, use tar xv or tar xvf TAPENAME, where TAPE-
NAME is the name of the tape drive on your system, such as /dev/rmt/ 
l m . 

b. Extracting from DOS floppy or DOS BBS. To install OpenZinc from the 
DOS file ZAF4xMTF.TZ, mount the DOS floppy or use a communica-
tions software package to retrieve the file, then move or copy the DOS 
file into the installation directory. 

Use zcat and tar to uncompress and unarchive the distribution files: 

localhost> cat zaf36mtf.tz | zcat | tar xvf -
If you purchased the OpenZinc Unicode key, uncompress and unarchive the 
distribution files this way: 

localhost> cat zaf36uni.tz | zcat | tar xvf -
c. Extracting from a file. If you received the file zaf.motif.4.x.tar.Z over 
the Internet, move the file to the location that you want to contain the 
OpenZinc directory tree, such as /usr/local. 

Use zcat and tar to uncompress and unarchive the distribution files: 

localhost> zcat zaf.motif.3.6.tar.Z | tar xvf -
If you purchased the OpenZinc Unicode key: 

zcat zaf .Unicode.3.6.tar.Z I tar xvf -

Run the 
installation 
script 

2. Run the installation script. 
Once you have extracted OpenZinc from the distribution media, run the instal-
lation script called INSTALL. 

localhost> ./INSTALL 
The script will detect whether you've installed the OSF/Motif or Curses 
keys. If you have, the script will ask you which you would like to use. 

INSTALL also asks questions about what type of system you have, and 
then it will show you the default configuration for your system type. You 
can change any parameters necessary. INSTALL then configures all the 

Getting Started with OpenZinc Programming 7 



Installing OpenZinc 

makefiles in the OpenZinc tree. If the C++ compiler on your system needs to 
have C++ source file names to end with something besides .cpp, such as 
.C, .cc, or .cxx, INSTALL changes all the source files in the OpenZinc tree. 

8 Getting Started with OpenZinc Programming 

NEXTSTEP 
Installing OpenZinc on a NeXT computer or on a PC running NEXTSTEP takes 
two steps: 

Extract OpenZinc 1. Extract OpenZinc from distribution media. 

a. Extracting from floppy. To extract OpenZinc from a floppy, insert the floppy 
into your computer and mount it in the Workspace. Click on the floppy 
icon in the Workspace Manager, and drag the OpenZinc.pkg icon from the 
floppy to a directory in which you have write permissions. 

b. Extracting from DOS BBS. To install OpenZinc from the DOS file 
OpenZinc.NXT, use a communications software package to retrieve the file, 

then move or copy the DOS file into the OpenZinc installation directory. Then 
rename the DOS file to OpenZinc.pkg.compressed. Last, open the Tools 
Inspector panel, and select Uncompress. 

c. Extracting from a file. If you received OpenZinc.pkg.compressed over the 
Internet, move the file to the OpenZinc installation directory. Then open the 
Tools Inspector panel, and select Uncompress. 

Load the 2. Load the package. 
package Double-click on the OpenZinc.pkg icon to launch the NEXTSTEP Installer. 

The Installer will then ask you to specify an installation directory. 
Choose an installation directory such as /LocalDeveloper/OpenZinc or /usr/ 
local/lib. When the Installer prompts you, remove the floppy in the com-
puter and replace it with the next one. 



Finished! 
Now that you've reached the end of this chapter, you're finished installing 

OpenZinc. Now you're ready to learn the details of OpenZinc's architecture—what the 
pieces of OpenZinc are, and how they fit together. 

Getting Started with OpenZinc Programming 9 



Installing OpenZinc 

10 Getting Started with OpenZinc Programming 



Introduction to OpenZinc 

In the early days of the Industrial Revolution, pinmaking was a slow, 
excruciating process. Each pinmaker, responsible for the entire construction 
of each pin, would fashion its head, its shaft, and finally sharpen the pin 
from a solid sliver of metal. Pinmaking was so inefficient, a group of twenty 
talented pinmakers might produce no more than twenty pins per week. 
Understandably, pins were expensive. 

Then came the development of interchangeable parts, and the craft of pin-
making became radically more efficient. Teams of pinmakers specialized in 
creating pin components—some would create the heads, some the shafts, 
and still others would put them together into a finished product. Because 
each pinmaker could benefit from the work of others, pin production soared 
and its costs plummeted. 

Getting Started with OpenZinc Programming 1 1 



Introduction to OpenZinc 

In the early days of the Information Revolution, programming, like pinmak-
ing, was also a slow process. Like pinmakers carving pins whole from solid 
slivers of metal, each programmer was responsible for writing his entire pro-
gram. A programmer would first design the program according to a specifi-
cation, create the program's procedures from scratch, and finally test and 
debug those procedures in a long and drawn-out process. Programming was 
so inefficient, a group of twenty talented programmers might take five years 
to produce a robust mission-critical program. Understandably, programs, 
like pins in the Industrial Revolution, were expensive. 

With the development of object-oriented programming, analogous to the 
development of interchangeable parts in the Industrial Revolution, the craft 
of programming became radically more efficient. Teams of programmers 
specialized in creating parts of programs. Some wrote file storage objects, 
some event handling objects, still others concatenated the objects into work-
ing programs. Because these programmers could concatenate objects into 
working programs without knowing how the objects worked, they often 
would write object-oriented programs in a fraction of the time. 

Procedural programs are difficult to maintain, difficult to port to different 
operating environments, and difficult to enhance with new features. This is 
what OpenZinc calls "the procedural dilemma." Caught in the procedural 
dilemma, procedural programmers struggle valiantly to incorporate new fea-
tures into their programs. Often they give up, and rewrite their programs 
from scratch when incorporating new features. 

Object-oriented programming helps programmers avoid the procedural 
dilemma by offering interchangeable software components. Object-oriented 
programmers realize dramatic improvements in productivity and reliability, 
and consequently the costs of developing and maintaining object-oriented 
programs plummets. 

An Object- OpenZinc helps programmers write object-oriented programs, in turn helping us 
o r i e n t e d s o l u t i o n solve the procedural dilemma. 

OpenZinc gives us a robust library of C++ classes that we can access in our appli-
cations. This library includes classes that handle events, manage windows, 
display help and error messages, and write to the displays. Further, OpenZinc's 
library includes user interface objects like windows, buttons, controls, lists, 
menus, tool bars, strings—all native to every environment OpenZinc supports. 

OpenZinc's architecture is open and extensible by design, allowing us to create 
custom versions of OpenZinc objects with behaviors that precisely meet our 
needs. With OpenZinc's modularity we won't find ourselves painted into a corner. 

12 Getting Started with OpenZinc Programming 



OpenZinc also features an intuitive interface design tool, OpenZinc Designer. Because 
OpenZinc Designer is tightly integrated with the OpenZinc class library, from within 
the Designer we have direct access to all of the library's features, including 
event handling and window management infrastructure, and OpenZinc interface 
objects. Further, our interfaces run under any environment OpenZinc supports 
with a look and feel native to the environment. 

In addition to OpenZinc Designer and OpenZinc's robust and comprehensive class 
library, OpenZinc lets us write applications to run under multiple operating envi-
ronments with one set of source code, which makes porting trivial. For 
example, with one set of source code, we can port our OpenZinc applications to 
DOS text and DOS graphics in real and protected modes, Microsoft Win-
dows, OS/2, Macintosh, OSF/Motif, Unix Curses, and NEXTSTEP. Further, 
one set of source code makes maintenance easier, letting us spend our devel-
opment resources on developing new products, not on trying to juggle sev-
eral versions of the same product. 

OpenZinc also helps us write programs that we can internationalize easily. If we're 
writing programs that need to run in multiple languages like English, Ger-
man, and Japanese, and that need to display data in formats specific to cer-
tain countries, money and dates, for example, OpenZinc does much of the work 
for us. 

Transition to C++ We might question the need to learn the new features of C++, and more 
importantly, object-oriented programming in general. But as we learn our 
way around OpenZinc, we'll find many compelling reasons to use OpenZinc and 
object-oriented programming techniques. 

The transition to object-oriented programming is nontrivial—but because 
OpenZinc has an elegant and consistent architecture, OpenZinc's a great place to start. 
Designed from the ground up for helping programmers write object-oriented 
programs that have graphical user interfaces, respond to events, and support 
multiple operating environments and languages, we'll find writing object-
oriented programs in OpenZinc will become intuitive and natural. 

However, to complete the OpenZinc tutorials, we recommend at least a working 
knowledge of object-oriented programming concepts as well as differences 
between ANSI C and C++. To successfully complete the tutorials, for exam-
ple, you will need to understand basic principles of object-oriented program-
ming like classes, inheritance, polymorphism; as well as basic features of 
C++ like constructors and destructors, member functions, virtual functions, 
and function and operator overloading. 

Getting Started with OpenZinc Programming 1 3 



Introduction to OpenZinc 

The benefits Of Writing object-oriented OpenZinc applications offers us several benefits over 

OpenZinc writing the same application procedurally. Some of those benefits are— 
Consistency. Because of its object-oriented nature, OpenZinc eliminates develop-
ing and maintaining multiple versions of source code for multiple platforms. 
With OpenZinc we can focus our efforts on developing, maintaining, and enhanc-
ing one set of source code, and let OpenZinc interact at a low level with the oper-
ating environment and display so we don't have to. Through abstraction, 
OpenZinc insulates us from the complexities of the operating environment with-
out restricting our access to environment specific features, like Microsoft 
Windows messages or the raw scan codes from the keyboard. 

Ease-of-use. Instead of generating source code which is difficult to optimize 
and is not object oriented, OpenZinc Designer saves our user interface as plat-
form-independent resources. 

Reusability. Not only are OpenZinc's base classes reusable, but any object or class 
that we create can become a part of our tool kit. We save time by using 
classes that have previously been tested and debugged. After all, "the line of 
code we didn't have to write is the line of code that won't break." 

Extensibility. Because OpenZinc is object oriented from the ground up, we benefit 
from a powerful feature of OOP—inheritance. Rather than developing an 
object from scratch, we can use OpenZinc's base classes with their existing mem-
ber functions and data to derive new classes. For example, we can create a 
new input device like a digitizer by deriving our own class from OpenZinc's 
device class. With inheritance we can stand on the shoulders of giants by 
creating only the unique characteristics of the new class and reusing the 
characteristics of the old class. 

Maintenance. Object-oriented applications are much easier to maintain than 
structured programs. With object-oriented encapsulation, C++ keeps rele-
vant data and functions together and allows us to modify an object without 
affecting other parts of the application. 

Flexibility. Wherever possible, OpenZinc has chosen to give the programmer 
more flexibility, rather than more rules. This means that OpenZinc, like C++ 
itself, gives us more freedom to write code, and less worries about conform-
ing to arbitrary OpenZinc standards. 

14 Getting Started with OpenZinc Programming 



Globalization. OpenZinc is the only environment where programmers can write 
OpenZinc programs for all other popular languages and locales. OpenZinc uses the 
IS08859-1 character set, which defines 8-bit characters, by default, but also 
provides support for the Unicode 16-bit character set using the Unicode Key. 
OpenZinc maps strings between these character sets and the native character set of 
the target operating systems. Additionally, OpenZinc also allows programmers to 
save language and locale information in a single file, and separate the infor-
mation for applications that use different languages in the same locale, aud 
different locales with the same language. 

OpenZinc: an At the highest level of its architecture, OpenZinc consists of components that han-
application die specific tasks; these components make up what OpenZinc calls the OpenZinc 
f ramework Application Framework, which is an infrastructure for helping us write 

event-driven, object-oriented, global programs faster than we could other-
wise. 

For example, one OpenZinc component is an infrastructure for retrieving events 
and routing them to the part of our program that knows how to respond to 
those events. Another component is an infrastructure for managing those 
parts of our application that respond to events, as well as managing how win-
dows behave on screen and how they respond to user input. 

Getting Started with OpenZinc Programming 1 5 



Introduction to OpenZinc 

This diagram displays the basic OpenZinc components and how they work 
together in an infrastructure. Study this diagram until you know how to rec-
reate it without looking at the book, and you'll have a much easier time of 
understanding OpenZinc as we continue with this discussion. 

Here's a description of all these components and what they do: 

Input devices. The keyboard, mouse, cursor, timer, or any other devices that 
generate events. 

16 Getting Started with OpenZinc Programming 



Event Manager. Handles the flow of events and system messages throughout 
the application. Certain operating systems sometimes will pass events to a 
window object, bypassing the Event Manager. 

Window Manager. Controls the behavior of windows. Certain operating sys-
tems sometimes will pass events to a window object, bypassing the Window 
Manager. 

Display. The display of the computer running the OpenZinc application. General-
ized by OpenZinc as an abstract class, from which programmers derive displays 
specific to particular display libraries. 

Help system. Displays help information at run time. 

Error system. Displays error information when a user enters inappropriate 
data. 

Event mapping. Mapping of raw input, such as mouse clicks and keystrokes, 
to logical system events such as sizing, moving, and redrawing. 

Color mapping. Mapping of colors in a specific operating system to OpenZinc 
colors. 

Storage. Reads and writes objects to and from disk. 

Geometry management. Allows the programmer to specify rules that dictate 
how objects should be positioned and sized in specific situations. 

Printer support. Allows the application to send output to a printer, either by 
performing a screen dump or by using the display primitives to draw an 
image. 

Getting Started with OpenZinc Programming 17 



Introduction to OpenZinc 

The Event Manager 
The Event Manager is OpenZinc's infrastructure for handling events and system 
messages. It accepts events from common input devices such as the key-
board and mouse and it stores event information in the event queue. The 
Event Manager also handles custom input devices we write ourselves like a 
digitizer or a scanner device. 

The event queue stores events until the event loop can pass the event to the 
appropriate window or window object. The event queue can buffer as many 
as 100 events by default, but this can be easily changed by the programmer. 
The Event Manager deals with these events one at a time until the event 
queue is empty. At run time, the event loop immediately takes events from 
the queue and passes them to the appropriate window or window objects. 

For example, in DOS, when the user presses Alt <F4>, the 
UID_KEYBOARD device, which is a specific OpenZinc class that handles key-
board events, receives the keystroke event and puts it into the event queue. 
As the event loop repeats its cycle, it passes the event to the Window Man-
ager, which then passes it to the appropriate window or window object. The 
event loop repeats until the user gives the application the "quit" event. 

18 Getting Started with OpenZinc Programming 



Ul D E V I C E and We 've skimmed over how the Event Manager works with input devices to 
abstract c lasses retrieve events. Now we'll explain how OpenZinc's devices work. Most compiler 

libraries have a set of functions to get input information from the keyboard, 
functions like getch() , ge tchar ( ) . However, most of these libraries include 
neither functions to handle information from other devices like the mouse, 
nor functions to handle multiple input devices. OpenZinc provides seamless sup-
port for multiple, diverse devices, which is what makes OpenZinc such a flexible 
event-driven environment. 

OpenZinc handles keyboard and mouse input in classes called 
UID_KEYBOARD and UID_MOUSE. By responding to events, which are 
information that comes from input devices, a OpenZinc program can follow the 
user's orders and call member functions, change data, even load new lan-
guages and locales "on the fly." 

All input devices inherit from the base class UI_DEVICE, which is an 
abstract class. An abstract class defines the basic behavior for a type of 
object, but typically leaves specific implementation details to a derived 
class. An instance of an abstract class cannot be created; a class must be 
derived from it and an instance of that class created. If we were to create our 
own input device, we would derive it from UI_DEVICE and add our own 
functionality. 

Getting Started with OpenZinc Programming 19 



Introduction to OpenZinc 

Event mapping Many user interface libraries convert raw input information to logical infor-
mation when the input device sends information. For example, a mouse 
device may define the left mouse button click as the L_SELECT operation. 
The programmer must then decipher the L__SELECT operation in the context 
of his or her program's operations, a task that many programmers find cum-
bersome. 

OpenZinc takes a different approach to event mapping. OpenZinc receives raw events 
from input devices at run time and interprets them in the context of the 
object and the type of operation being performed. This means the program-
mer doesn't have to write as much code, freeing him or her up to focus on 
writing the program's core functionality. 

Here's how OpenZinc's event mapping works. Imagine running a hypothetical 
application that has a main window and a text field. Here's a description of 
how OpenZinc would map the events generated in DOS when clicking the left 
mouse button or pressing the <F2> key on the keyboard: 

1. The input device, UID_KEYBOARD or UID_MOUSE, receives the 
event and places the keyboard or mouse information in the event queue. 

2. The Window Manager passes the event to the current window. 

3. The window passes the event to the current window object. 

4. The UIW_TEXT window object evaluates both the keyboard and mouse 
events as the L_BEGIN_MARK operation. 

5. Finally, the results of the L_BEGIN_MARK operation return to the win-
dow and then to the Window Manager. 

Benefits Of Here's how logical event mapping benefits us. First, each object interprets 
logical event the event according to how the object operates, eliminating the need for us to 
mapping write code to tie events to window objects. The UIW_TEXT object views 

both events as an L_BEGIN_MARK operation. However, if the mouse click 
returned unprocessed to the Window Manager, it would interpret it as an 
L_BEGIN_SELECT operation, while the <F2> key, which is unknown by the 
Window Manager, would remain unprocessed. 

Another benefit from logical event mapping gives us the ability to create 
additional input devices that generate their own raw event information. This 
way, we can define logical event mapping for OpenZinc but still receive all the 
raw event information generated by the new input device. Still another bene-
fit is that we can easily redefine key mapping without changing OpenZinc's source 
code, allowing us to customize our programs without interfering with how 
OpenZinc operates. 

20 Getting Started with OpenZinc Programming 



But the most important benefit from logical event mapping is portability. 
Because OpenZinc allows each object to behave differently, an object has the flex-
ibility to behave differently under different operating environments. We can 
assign behavior on an object-by-object basis, a manageable task, in contrast 
to forcing an object to reevaluate its behavior in contexts of different operat-
ing environments. 

The Window Manager 
So what happens after the Event Manager gathers events in the event queue? 
How does the program know how to respond to those events? The answer 
lies in the Window Manager, which determines how windows and window 
objects behave. 

Just as good tourists do what the Romans do when in Rome, OpenZinc ensures 
that when we're writing programs that run under multiple operating environ-
ments, the programs behave as though they're native to that environment. In 
fact, OpenZinc creates native applications for each environment it supports. One 
reason OpenZinc does this is to ensure each program responds to events in the 
manner native to that operating system, making programming simpler. 

"Top down" and An operating environment with no native ability to handle events means that 
"bottom up" if we want to write an event-driven program for that environment, we'll have 

to bring our own event handling infrastructure with us. OpenZinc's native event 
handling model is a "top-down" model because events trickle down from the 
top, the main event loop, through the Window Manager and the current win-
dow, to the current window object. Each of these objects gets a chance to 
determine if it should respond to the event; if an object doesn't or can't, it 
merely passes it down the hierarchy. 

Some operating environments that can handle events use what is called a 
"bottom up" event handling model in which the event goes directly to the 
lowest level current object. In this case, events follow a more complicated 
route. Here's a brief description. When we write a OpenZinc program that runs 
under Microsoft Windows, an example of an operating environment that 
uses the bottom-up model of handling events, OpenZinc relies on the native meth-
ods of Windows for its windows and window objects to respond to system 
events. 

Getting Started with OpenZinc Programming 21 



Introduction to OpenZinc 

For example, if a user clicks on an object, the operating system gets the 
event and places it on its own event queue. When OpenZinc gets the event from 
the event queue and starts to process it, instead of routing the native message 
through the OpenZinc hierarchy, it sends it to the operating system and lets it pro-
cess it like any other native event. Because Windows is a bottom-up environ-
ment, the event goes directly to the window that was clicked on, the 
"bottom" object. If that object does not handle the event, it may choose to 
pass it back up the hierarchy so that a higher level object can process it— 
hence the term "bottom up." 

Window 
position and 
priority 

The Window Manager maintains a list of windows and minimized windows. 
The Window Manager determines the position and priority of windows on 
the screen and channels the events to the proper windows. 

For example, if Window 1 overlapped Window 2, the Window Manager 
would route all keyboard information to Window I, since it is the topmost 
window—the current window. In addition, any mouse events that overlapped 
Window 1 or the area intersected by Window 1 and Window 2 will be sent to 
Window 1 for processing. If a mouse event overlaps the area occupied only 
by Window 2, however, that event would go to Window 2. 

All windows and window objects derive either directly or indirectly from the 
UI_WINDOW_OBJECT base class. This means that all OpenZinc windows and 
window objects share certain behaviors and characteristics, notably the abil-
ity to appear native to the operating environment under which we compile 
our programs. 

Native objects, OpenZinc doesn' t emulate the look and feel of a native object, as do some other 
not emulated application frameworks. Rather, OpenZinc uses native objects—no emulation 

needed. Windows and window objects native to each environment are faster 

22 Getting Started with OpenZinc Programming 



because the OpenZinc program doesn't have to draw the objects or process system 
events that the native object already processes. When we write programs in 
OpenZinc for multiple environments, our programs are indistinguishable from 
other programs written specifically for those environments. 

If you've ever used a program that runs under multiple environments, and 
that program uses windows and window objects different from those that 
you're used to, you'll understand the frustration of users who feel that the 
programmer didn't care enough to write that program specifically for them. 
Because all windows and window objects are native, it's easier for us to 
write applications. 

The display 
Since OpenZinc programs support multiple operating environments, OpenZinc has cre-
ated some infrastructure for making those programs easier to write in an 
intuitive and simple way. 

OpenZinc's infrastructure is an abstract class called UI_DISPLAY. We will never 
use a display of the UI_DISPLAY class; rather, we will use a display 
derived from UI_DISPLAY, but with behaviors defined for a specific type 
of display, such as a Borland BGI display, an OS/2 display, or a NEXTSTEP 
display. As an abstract class, UI_DISPLAY defines some functions that a 
display object should perform, but it leaves how those functions should be 
performed up to the specific displays. 

This object-oriented approach to handling displays gives us an attractive 
benefit. We can run our graphical application under all the environments 
OpenZinc supports with one set of source code, merely deriving a display specific 
to our own. Further, because all displays derive from UI_DISPLAY, they all 
have the same interface, making it less work to understand how to access dif-
ferent displays. 

Getting Started with OpenZinc Programming 23 



Introduction to OpenZinc 

Here's both a representation of the UI_DISPLAY class hierarchy and a list 
of all the classes derived from the UI_DISPLAY base class: 

The help and error systems 
Most robust applications have some sort of help system to give users infor-
mation about features while running the program. OpenZinc makes it easier for us 
to write such a help system with a class called, appropriately, 
UI_HELP_SYSTEM. This class uses OpenZinc windows to display help infor-
mation, ensuring that no matter which applications we want our program to 
support, we'll only have to write the help information once. 

OpenZinc initially does not make us include the UI_HELP_SYSTEM class; if 
we don't want the help system class linked into our programs, we don't have 
to use it. OpenZinc gives us the choice to decide whether or not we include a help 
system, putting us in control of how we write our own applications. 

24 Getting Started with OpenZinc Programming 



As with help systems, most robust applications have some sort of error sys-
tem that tell us when we've made a mistake while running the program. 

OpenZinc's error system is a class called, appropriately, UI_ERROR_SYSTEM. 
This class uses OpenZinc windows to display error information. Again, as with 
the help system, this means no matter which environments we want our pro-
gram to support, we'll only have to interface with one error system. 

OpenZinc initially does not make us include the UI_ERROR_SYSTEM class; if 
we don't want the error system modules linked into our programs, we don't 
have to use it. OpenZinc gives us the choice to decide whether or not we include 
an error system, putting us in control of how we write our own applications. 

Storage and retrieval 
We've seen how OpenZinc gives us quite a bit of infrastructure for handling much 
of what goes on under the hood of an object-oriented, event-driven, graphi-
cal application. In addition to all the other infrastructure OpenZinc gives us, we 
can use OpenZinc's ability to save and load data to and from disk. OpenZinc uses an 
advanced method for saving and loading data to disk called persistent object 
technology. Persistence isn't unique to OpenZinc, but OpenZinc's flavor of persistence 
allows us to store and retrieve C++ objects to and from disk as platform-
independent resources through low-level file management routines as well 
as persistent object technology. 

OpenZinc uses its own storage and retrieval classes in OpenZinc Designer. When we 
interactively create and modify windows and window objects using OpenZinc 
Designer, we're using the same storage and retrieval classes we'd use without 
OpenZinc Designer. 

Getting Started with OpenZinc Programming 25 



Introduction to OpenZinc 

Globalization 

The obstacles to 
reaching the 
global market 

ISO 8859-1 and 
Unicode 

We've covered almost all of OpenZinc's infrastructure for writing object-oriented, 
event-driven, graphical applications. But we still need to discuss how OpenZinc 
makes it easy for us to write applications that run in different languages and 
display localized information about dates, money, and so forth. 

True globalization is a complex process. If we were to write a program and 
deploy it on desktops in North America, Europe, and the Pacific Rim, among 
other things, we would have to enable our program to be compatible with 
complex permutations of languages and locales, eight- and 16-bit character 
sets, incompatible hardware and display technologies, and a plethora of 
input methods. 

OpenZinc takes more of the burden off our shoulders than any other application 
framework. Using OpenZinc's optional Unicode key ensures that our programs 
can detect their language and locales at run time, use both 8-and 16-bit fonts 
as appropriate, run on nearly all popular hardware combinations, and work 
with nearly all popular input methods. 

We're not obligated to use Unicode to deploy our OpenZinc applications in most 
areas of the world; OpenZinc programs automatically use the eight-bit ISO 8859-
1 character set, which contains most international characters. This means the 
base OpenZinc Engine and Keys let us reach much of the world's software market 
right out of the box. However, if we must deploy a OpenZinc application in a 
nation that uses a 16-bit font, like most Asian countries, OpenZinc gives us the 
option to use Unicode, an international standard for character sets. Unicode 
contains every character from every modern language, giving OpenZinc a single, 
comprehensive standard for displaying characters. 

For example, if we wrote a OpenZinc application and intended to distribute the 
executable in the United States and Japan, we'd translate the interface text 
into Japanese, and then use OpenZinc's Unicode characters to represent the Japa-
nese text on our interface. We'd do the same thing if we wanted to translate 
our interface to any other language—Unicode contains any characters we'd 
need. Using Unicode to represent character sets makes programming easier 
because we only need to deal with one standard. 

Language and 
locale 

Another reason running OpenZinc applications in different languages and locales 
is easier is that OpenZinc gives us the ability to store different languages and 
locales in the same interface file. If we write our OpenZinc application with 

26 Getting Started with OpenZinc Programming 



English and Japanese interfaces, we don't have to juggle two different inter-
face files; OpenZinc can store it for us in one place, giving us fewer components 
to worry about. 

OpenZinc keeps certain globalization information separate from interface text, 
however; this information concerns the locale, or region of the world where 
our program will run. Part of translating a program is displaying locale infor-
mation in a format that differs from country to country—date information, 
decimals, and currency symbols in certain window objects, for example. 
When we translate our program we merely specify to OpenZinc which locale to 
use; it's as easy as that. In fact, OpenZinc automatically detects what language and 
locale the environment is using, and will automatically adapt to the environ-
ment's needs. 

One dramatic benefit of separating language from locale is our program's 
ability to use multiple languages within one distribution region. For exam-
ple, if we wrote a OpenZinc application for both English-speaking and French-
speaking Canadians, we'd still have to translate our interface into English 
and French, but we'd only have to specify one locale—Canada. Another ben-
efit of separating language from locale is our program's new ability to use 
different data formatting in the same language. For example, if we wanted to 
write an application for Spanish speakers in Mexico, we'd still have to spec-
ify Mexican locale information, but we could merely translate our interface 
into Spanish. Again, OpenZinc gives us flexibility in how we write our programs, 
leaving the design decisions up to us. 

Delta Storage Another reason running OpenZinc applications in different languages and locales 
is easier is that OpenZinc gives us the ability to store only the differences between 
languages and locales in what OpenZinc calls delta storage. If we write our OpenZinc 
application with English and Japanese interfaces, OpenZinc doesn't have to dupli-
cate both interfaces, translated text and all; OpenZinc merely stores the differ-
ences between the interfaces, decreasing our program size and increasing its 
performance. Without delta storage, users would have to dedicate a larger 
amount of disk space to their applications. 

Getting Started with OpenZinc Programming 27 



Introduction to OpenZinc 

Geometry management 
Programming graphical user interfaces opens up the problem of how inter-
face objects should relate to each other visually—this is called geometry 
management. Though some user interface design tools provide some rudi-
mentary rules for how those relationships should work, OpenZinc takes geometry 
management to the next level. OpenZinc's geometry management allows the pro-
grammer to specify sophisticated rules that dictate how objects should be 
positioned and sized in specific screen resolutions, on every platform OpenZinc 
supports. 

Printer support 
Part of the difficulty of writing crossplatform programs is determining how 
to print. OpenZinc's printer object allows our programs to perform a screen dump, 
or to print an image using OpenZinc's display primitives—bitmaps, ellipses, lines, 
polygons, rectangles, as well as text. OpenZinc's printer support formats text 
across an entire page, providing page breaks as necessary. Further, OpenZinc pro-
vides the ability to print an environment's default printer, as well as to a 
PostScript file. And in DOS, which has no printer support, OpenZinc supports the 
popular PCL format. 

Conclusion 
OpenZinc allows us to write programs easily ported to other operating environ-
ments, languages, and locales. OpenZinc's library includes native interface objects 
like windows, buttons, controls, lists, menus, tool bars, and strings in every 
environment OpenZinc supports, ensuring high performance and acceptance by 
users. OpenZinc includes infrastructure that handles events, manages windows, 
displays help and error messages, and manages the visual relationships of 
interface objects, leaving us to concentrate on writing programs rather than 
reinventing the wheel. In the next chapter we're going to discuss OpenZinc's win-
dows and window objects. 

28 Getting Started with OpenZinc Programming 



Chapter 3 Window Objects 

in the last chapter, we discussed how OpenZinc helps programmers write 
object-oriented applications, OpenZinc's underlying infrastructure, and the types 
of OpenZinc objects we can use in our applications. In this chapter, we'll discuss 

OpenZinc's window object classes. We'll discuss each window object, what it 
does, and how it works. 

Most OpenZinc windows share basic window objects; they have borders, titles, 
maximize buttons, minimize buttons, and system buttons. In another exam-
ple of how OpenZinc helps us write efficient programs, OpenZinc doesn't make us 
include these basic window objects with every OpenZinc window we instantiate. 
Instead, we add to our windows the objects we want, instead of deleting 
objects we may not want. 

Getting Started with OpenZinc Programming 29 



Window Objects 

OpenZinc's window objects 

Basic window Below is a typical OpenZinc window and its basic window objects, in addition to 
Objects the code we'd need to write to instantiate them under any operating environ-

ment OpenZinc supports. Notice it doesn't take much code to instantiate this win-
dow and its basic objects. 

*window 
+ new UIW_BORDER 

+ new UIW_MAXIMIZE_BUTTON 

+ new UIW_MINIMIZEJ3UTT0N 

+ new UIW_SYSTEM_BUTTON(SYF_GENERIC) 
+ new UIWJTITLE(" Generic Window "); 

Although some operating environments don't have some of these basic win-
dow objects—for example, NEXTSTEP windows don't support maximize 
buttons—we can use these and all other window objects for any operating 
environment OpenZinc supports. If we use a maximize button in a OpenZinc program 
that runs under NEXTSTEP the NEXTSTEP window simply will not dis-
play the maximize button. 
Here's a list of the window objects we used in the above code, and the 
classes which they comprise. 
Border. The UIW_BORDER class. In graphics mode, the border is a three-
dimensional shaded region drawn around the window; in text mode, the bor-
der is a 

shadow. 

Maximize button. The UIW_MAXIMIZE_BUTTON class. Located on the 
top right side of the window. Changes the size of its parent window to 
occupy the entire screen display. 

Minimize button. The UIW_MINIMIZE_BUTTON class. Usually located 
at the top right corner of the window. When pushed, it reduces the window to 
an icon. 

30 Getting Started with OpenZinc Programming 



System button. The UIW_SYSTEM_BUTTON class. When pushed, selects 
window or system specific commands associated with the window object, 
such as size, move, maximize, minimize, and close. If the system button has 
options, a pop-up menu appears on the screen. 

Title bar. The UIW_TITLE class. Displays text to identify the window. 

Now that we've seen the different types of basic window objects we've used 
in our code snippet, let's take a look at some more complicated window 
objects we can use in our applications. 

Buttons The simplest of the more complicated window objects is a button. A button 
is a rectangular region of the screen that displays information and performs 
an operation when pushed. 

At its most general level, a basic button display information in the form of 
text. But in OpenZinc, we can also use more complicated buttons—bitmapped 
buttons, check boxes, and radio buttons, all of which look and act differently 
from basic buttons. Though these more complicated buttons look and act dif-
ferently, they all derive from UIW_BUTTON and share the same behav-
ior—they display information and perform operations. In other words, 
despite their more complicated behavior, they're all still buttons. 

Below is an instance of UIW_BUTTON, the most basic button object in 
OpenZinc's library 

Bitmapped button. Displays a bitmap rather than, or in addition to, text. Bit-
mapped buttons used in text mode will not display graphics. 

Getting Started with OpenZinc Programming 31 



Window Objects 

Check box. Check boxes in a window, a group, or a list box are members of 
the same group. Multiple checkboxes from a group may be selected at any 
time. 

Combo boxes Another more complicated OpenZinc window object is the combo box. Imple-
mented as the UIW_COMBO_BOX class, the combo box is a one-line 
string field with a button object attached, that, when clicked, displays a list 
of items from which we can choose. 

Many operating environments include the combo box, the purpose of which 
is to give the user multiple ways to select an option. When using a combo 
box, a user can select options with the mouse, or he can type the option he 
wants into the string field using the keyboard. 

Here's how the combo box works. Consider a program that contains a list of 
selections. When the user pushes the button attached to the string field, a list 
that contains those selections appears on the screen. When the user clicks on 
the selection he wants, the item is copied into the string field, and then the 

32 Getting Started with OpenZinc Programming 

Radio button. Radio buttons in a window, a group, or a list box are members 
of the same group. Only one radio button from a particular group may be 
selected at any time. 

UIW_GROUP is a OpenZinc class for grouping OpenZinc objects together on screen. 
Once we instantiate a group object, we add to the object the desired radio 
buttons and check boxes. Unless we're using only one radio button or check-
box, we use the UIW_GROUP class to group our window objects together. 



list disappears. Alternatively, the user can type the selection into the string 
field directly, bypassing the pop-up list and saving time. Here's a 
UIW_COMBO_BOX object: 

Dates When we write OpenZinc programs that display date information or gather date 
information from a user, we use objects of class UIW_DATE. These objects 
display date information and allow the user to enter and modify date infor-
mation in different formats. Below is a UIW_DATE object: 

The default behavior of a OpenZinc date object is to display the date in a format 
native to the language and locale under which the program's running. How-
ever, by passing to the constructor certain styles, we can override any lan-
guage or localization information. 

Here's a list of all the different styles OpenZinc's date class supports, and a sample 
of how dates look using these styles. 

Getting Started with OpenZinc Programming 33 



Window Objects 

34 Getting Started with OpenZinc Programming 



Though geometry management isn't a window object, it affects the way win-
dow objects display themselves in relationship to their parent windows and 
other objects. 

An object's geometry is its height, width, and location on its parent, and 
geometry management is a feature that allows the location and size of other 
objects to determine an object's geometry. For example, we can use OpenZinc's 
geometry management to keep a button centered in its parent, regardless of 
the parent's size. 

Icons An icon is a small window that displays a graphic image that allows the user 
to recognize information quickly. OpenZinc's UIW_ICON class gives instances 
of OpenZinc icons some standard behavior and properties. For example, when we 
instantiate an icon of the UIW_ICON class, we can display it on a window 
or attach it to the window as a the icon to which the window will minimize. 

Below is an instance of the UIW_ICON class. 

Lists Lists provide a method of giving the user predefined, uneditable selections to 
choose from. Because the user can choose only the selections that we give 
him, we can ensure that our program can use those selections as valid input. 

To give us a quick way to include lists in our OpenZinc applications, OpenZinc pro-
vides two list classes, UIW_VT_LIST and UIW_HZ_LIST, which display 
selections either in a vertical list with one column, or a horizontal list with 
one or more columns. The available selections are added to the lists as 
instances of other OpenZinc objects, typically strings or buttons. 

These are instances of vertical and horizontal list objects: 

Getting Started with OpenZinc Programming 35 



Window Objects 

MDI windows The OpenZinc windows we've seen so far display themselves on screen indepen-
dently of each other; they can overlap and cover each other, but so far they 
can't display themselves inside of another window. However, the popular 
Microsoft Windows environment specifies a type of window called the MDI 
window, or multiple-document interface window, that displays itself inside 
another window, and so OpenZinc created its own MDI window object that we 
can use to display windows inside other windows. 

However, unlike other window objects we've discussed in this chapter, 
OpenZinc's MDI window doesn't derive from its own class. A OpenZinc MDI window 

is a normal OpenZinc window, but with a flag that tell the window to become an 
MDI window. To instantiate an MDI parent and child window with OpenZinc, we 
instantiate two windows, the first an MDI parent, and the second an MDI 
child. However, we create these windows with the flag 
WOAF_MDI_OBJECT\ then we simply attach the child to the parent with 
the overloaded + operator. 

OpenZinc MDI parent windows behave like any other OpenZinc window; they may be 
maximized, minimized, moved, or sized within the MDI parent. The only 
restriction of MDI child windows is that they cannot move outside of their 
parent—the parent window clips the child at the inside of their parent's bor-
der. Below is an MDI parent window that contains an MDI child window 
and several minimized MDI child windows. 

Menus In describing OpenZinc's more complicated window objects, we've discussed how 
some of OpenZinc's objects present selections to the user. Now we're going to dis-
cuss what OpenZinc lets us do with menus. What sets menus apart from lists and 
combo boxes? The crucial difference between menus, lists, and combo bars 
is that menus provide an intuitive way to find functions associated with a 
specific window. 

36 Getting Started with OpenZinc Programming 



In OpenZinc, menus of four components: pull-down menus and items, and pop-up 
menus and items. The pull-down menu is the first level in the selection pro-
cess. Below is a typical window with a pull-down menu object that stretches 
across the window below the title bar. 

The pull-down menu consists of a pull-down item labelled File. This pull-
down item lists the types of functions that the user can access while this win-
dow is active; because this pull-down item groups similar functions together, 
the user can find a function without sorting through the pull-down items. 
When the user clicks on a pull-down item, the pull-down menu displays a 
pop-up menu that lists those similar functions as pop-up items. Then in only 
a few seconds, with only one mouse click and some mouse movement, the 
user can merely click on a pop-up item and access that function. Here is a 
menu object: 

Notebook The OpenZinc notebook class, UIW_NOTEBOOK, offers an intuitive interface 
for navigating around groups of related objects. An instance of a notebook 
object has tabs like a notebook in the real world—except the notebook object 
"turns" to the page when the user clicks on it. Here's an instance of a note-
book object, taken from OpenZinc Designer: 

Numbers OpenZinc gives us several classes for when we want our programs to display or 
gather numeric information. OpenZinc supports three types of number fields with 
the UIW_BIGNUM, UIW_INTEGER, and UIW_REAL classes. 

Getting Started with OpenZinc Programming 37 



Window Objects 

The UIW_BIGNUM class displays numbers with up to 30 digits to the left 
of the decimal point and eight digits to the right, by default. It also formats 
numbers using percent signs, commas, and decimal places. The 
UIW_INTEGER class displays numbers using the integer data type. The 
UIW_REAL class displays real numbers and numbers in scientific notation 
using double-precision, floating-point numbers. When an instance of the 
UIW_REAL class displays numbers that are too long for the field, it uses 
scientific notation so the user can view the entire number. 

These are the display and entry styles we can use with the UIW_BIGNUM 
class, in addition to examples of how these styles look. 

Scroll bars allow the user to scroll an object or its information using the 
mouse. Both horizontal and vertical scroll bars can be created. A scroll bar is 
created using the UIW_SCROLL_BAR class. 

38 Getting Started with OpenZinc Programming 



Slider A slider is similar to a scroll bar, except that it doesn't control another object; 
instead it's a standalone object. A slider lets us select a setting from a range 
of values; it displays the current value in a range of values. A slider is cre-
ated using the UIW_SCROLL_BAR class by setting the SBF_SLIDER flag 
in the constructor. 

Spin control Many people who have worked with electronic equipment have used a dial 
to quickly flip through a range of information. A dial gives us the ability to 
test many values to find quickly the one we want without wasting a lot of 
time. OpenZinc's spin control class, UIW_SPIN_CONTROL, is the window 
object equivalent of a dial that lets users flip through a range of values to 
find the one that works best. 

A spin control instance displays the object's current value in a field, while 
two buttons allow the user to increment or decrement that value. Our spin 
control objects can use many OpenZinc window object classes, such as 
UIW_BIGNUM, UIW_DATE, UIW_TIME, and so forth, to contain that 
value. When instantiating a spin control object, we can tell the object to 
increment or decrement its value by certain amounts that we specify. 

Below is an instance of a OpenZinc spin control object: 

Getting Started with OpenZinc Programming 39 

Status bar Often, programs provide information about the status of some of its compo-
nents—for example, a program might display status information like the cur-
rent cursor location or the last key pressed. To make it easier for us to display 
status information in our programs, OpenZinc gave us a class called 
UIW_STATUS_BAR. 

A OpenZinc status bar displays at the bottom of a window information about the 
status of information in our program. To display this information we attach 
time fields, date fields, number fields—anything that contains status infor-
mation—to the status bar, in the same way that we'd attach a window object 
to a window. 

Below is an instance of a OpenZinc status bar object: 



Window Objects 

String fields A string is a set of characters upon which we can perform certain operations. 
In OpenZinc, a string field is an object that displays or accepts from a user as 
input a string, with or without special formatting, that takes up only one line 
in a field. We'll often manipulate strings in our programs, so using an exist-
ing OpenZinc class instead of writing our own will save us a lot of time and work. 

OpenZinc provides two classes for working with string fields, UIW_STRING 
and UIW_FORMATTED_STRING. The UIW_STRING class allows us 
to display and to gather from the user string information, whereas the 
UIW_FORMATTED_STRING class does the same thing except it speci-
fies a format for the data that is entered and displays the data in that format. 
For example, we would create a UIW_STRING field to accept the user's 
name. But we would create a UIW_FORMATTED_STRING if we wanted 
to accept the user's telephone number in the format (801) 785-8900, with 
parentheses and a dash in the appropriate places. 

Below is an instance of a string field object. 

When we want to work with a OpenZinc string field, we pass to the string field object 
special placeholder characters that represent how to format its encapsulated string 
information. Though the UIW_STRING and UIW_FORMATTED_STRING 
differ in how they format information, both classes share these placeholder charac-
ters along with common display styles. Here's a partial list of the display styles 
these string field classes share: 

40 Getting Started with OpenZinc Programming 



TABLE 4. String-field display styles (partial list) 

Right justify Displays string at the rightmost border of the 
field. 

Center justify Displays string in the center of the field. 

Table A table is used to present lists of information to the user. Often the informa-
tion is comprised of multiple, related fields. The table can display headers to 
describe the contents of each row and column of data. 

Text Besides working with strings, manipulating text is one of the most common 
things we'll do in writing graphical applications, so using OpenZinc's text class 
will save us a lot of time and work. We can think of OpenZinc's text class as a 
multiline string field class, except that we can attach scroll bars to our text 
objects and that some of the custom display options can't be used with the 
text class. 

OpenZinc's text class, UIW_TEXT, allows us to display and to gather from the 
user text information; with UIW_TEXT we can use many of the custom dis-
play styles of the UIW_STRING class, in addition to functionality specific 
to a text object, such as cursor movements. For example, OpenZinc text objects 
include the built-in capability for moving to the beginnings and ends of 
words, lines, and pages, in addition to scrolling up and down pages and 
wrapping words that extend beyond the boundaries. 

Below is an instance of the UIW_TEXT class. 

We should use UIW_TEXT objects for multiline text information, and use 
the UIW_STRING objects for single line information. 

Getting Started with OpenZinc Programming 41 



Window Objects 

Additionally, when we instantiate a OpenZinc text object, we can use the 
WOF_NON_FIELD_REGION flag to cause our text to take up all the avail-
able space inside the window's border. For example, a help window always 
contains the basic window objects we discussed at the beginning of this 
chapter, as well as a UIW_TEXT field that dynamically fills the window. 

Time We can use OpenZinc's time field objects whenever we want to display time infor-
mation or gather time information from the user. Time field objects, created 
using the UIW_TIME class, display time information and allow the user to 
enter and modify time information in many different international formats. 

Below is an instance of the UIW_TIME class. 

The default behavior of a OpenZinc time field object is to display the time in a 
format native to the language and locale under which the program's running. 
However, with certain OpenZinc flags, we can override any language or localiza-
tion information. 

Here are the different styles OpenZinc's time field class supports, and a sample of 
how time styles look. 

42 Getting Started with OpenZinc Programming 



Tool bars Tool bars display at the top of a window and are used to provide quick access 
to commonly used features. Tool bars are useful because, like pull-down 
menus, they provide an intuitive way to access functions associated with a 
specific window; but in providing a single button for accessing that function, 
they save mouse clicks and movements and therefore they save time and 
work. In OpenZinc, tool bars of the UIW_TOOL_BAR class can contain OpenZinc 
objects like icons, buttons with bitmaps, strings, combo boxes, and so forth. 

Below is an instance of the UIW_TOOL_BAR class. 

Other Any window object that comprises and conforms to the operating protocol 
programmer- defined by the UI_WINDOW_OBJECT base class, 
defined window 
objects 

Getting Started with OpenZinc Programming 43 



Window Objects 

Editing window Users can edit certain window objects, notably String, Formatted String, 
objects Text, Number, Date, and Time. All editable window objects support the 

following features: 

TABLE 6. Features of editable window objects 

Mark Marks part of the current field for cutt ing or copying. Marked 
regions are shown as shaded regions. 

Cut Cuts the marked contents of the current field and stores it in a 
paste buffer. This data can later be pasted into any other field, as 
long as the information is valid for that field type. For example , 
the text "400" could be pasted into a numeric, string or text field, 
but not in a check box. 

Copy Copies the marked contents of the current field and stores it in a 
paste buffer. This data can later be pasted into any other field, as 
long as the information is valid for that field type. 

Paste Copies the contents of the paste buf fer into the current field. Data 
can be pasted into any field, as long as the information is valid for 
that field type. 

Conclusion 

In this chapter, we've learned about OpenZinc's window object classes, includ-
ing what they do and how they work. Besides borders, titles, maximize but-
tons, minimize buttons, and system buttons, which are the most basic 
window objects in the OpenZinc library, we can use OpenZinc window object classes, 
all operating-environment independent, for accomplishing many things. 
These things include using dates and times with international formats, using 
pull-down menus and tool bars, offering selections in vertical and horizontal 
lists, displaying MDI windows, and manipulating strings and text. 

In the next chapter we'll learn about issues of writing OpenZinc programs for mul-
tiple operating environments. 

30 Getting Started with OpenZinc Programming 



Writing 
Multiplatform 
Programs 

in the last chapter, we learned the contents of OpenZinc's window and window 
object classes, including what each does and how it works. In this chapter, 
we'll discuss how OpenZinc enables us to write programs for multiple operating 
environments. 

Getting Started with OpenZinc Programming 45 



Writing Multiplatform Programs 

About multiplatform programming in OpenZinc 

Single source Writing a OpenZinc program for multiple operating environments requires only 
one set of source code. This is an important benefit of OpenZinc. Since we only 
need to write one program for all our operating environments, we don't have 
to juggle multiple sets of source code, making multiplatform development 
easier. 

OpenZinc consists of two parts, the Engine and the Key.With the Engine & appropriate key, we can compile DOS text, DOS graphics, Windows and 

Windows NT, OS/2, Macintosh, Motif, Curses, and NEXTSTEP programs from 
the same set of source code. 

The Engine includes all of OpenZinc's code that is independent of specific operat-
ing environments. It also includes collateral such as this manual. The Key 
includes precompiled libraries for our target operating environment, the 
source code for the display class, and OpenZinc Designer. 

Look and feel An important OpenZinc goal is to allow our programs to look and feel native to 
the environment for which they were compiled—for example, OpenZinc wants 
our DOS applications to look and feel like DOS applications, our OS/2 
applications to look and feel like OS/2 applications, and so forth. OpenZinc wrote 
its libraries with windows and window objects for each operating environ-
ment it supports. This way, we don't have to know the low-level details of 
each environment, but can still access them directly if we wish. This means 
our OpenZinc programs will look and feel native to our target environments 
because they are native—and users will accept our programs without a sec-
ond thought. 

Libraries OpenZinc's source code for windows, window objects, and event handling for 
each operating environment lives in certain library files, named for specific 
things in each environment. For example, the DOS libraries are called 
DOS_ZIL.LIB. This is the file we must link into the executable if we want 
to write OpenZinc applications for DOS. For a complete list of all the library files 
OpenZinc includes, consult "Appendix A, Compiler Considerations." 

Engines and 
keys 

46 Getting Started with OpenZinc Programming 



Application type. If your compiler can compile executables for multiple 
environments, select the compiler option to create the application as an exe-
cutable for the target environment. 

Memory model. If you are building an application for an operating system 
that supports multiple memory models, you must use the large memory 
model since this is the only model OpenZinc supports in those environments. 

Main( ) Ordinary C++ programs call main( ) as their first function, and OpenZinc pro-
grams are no different. However, in OpenZinc we can create the main() function 
in two ways. The first is to create the Main() function in the OpenZinc class 
UI_APPLICATION. This class provides our programs with a main( ) or 
WinMain() function, depending on whether our target environment is DOS 
or Windows; this class also initializes the display, Event Manager, and Win-
dow Manager. The second way is to write the main() function ourselves and 
initialize the display, Event Manager, and Window Manager by hand. 

OpenZinc designed the UI_APPLICATION class to handle much of the work of 
setting up the infrastructure needed to run a OpenZinc program under multiple 
operating environments. This infrastructure includes the display, the Event 
Manager, and the Window Manager. We recommend that you use 
UI_APPLICATION::Main( ) wherever possible to set up that infrastruc-
ture. 

Event handling In OpenZinc, each window object contains an Event( ) function that processes 
messages as appropriate for the target operating environment. We can clas-
sify event handling into two types: top down and bottom up. 

In top down environments, the Event Manager receives events from input 
devices such as the keyboard and mouse, which it places in the event queue. 
Then the main event loop takes each event from the queue and dispatches the 
event to the Window Manager, which processes the event with its own 
Event() function, and determines whether or not it can respond to the event. 
If the Window Manager can, it performs an action and passes control back to 
the main event loop; but if the Window Manager cannot, it passes the event 
to the current window, which then processes the event with its own Event( ) 
function. If it can, the window performs an action, but if it cannot, it passes it 
to the current window object, which responds to the event. 

Getting Started with OpenZinc Programming 47 

Compiler When writing a OpenZinc program for a target operating environment, pay special 
options attention to the following compiler options: 



Writing Multiplatform Programs 

In bottom-up environments, the operating environment receives events from 
input devices such as the keyboard and mouse, and processes the event in a 
black box', inside the black box, the operating environment determines which 
object the event is supposed to go to. When the system processes the event, it 
dispatches the event to the current window object, which then determines 
whether or not it can respond to the event. If the window object can, it per-
forms an action and returns control to the operating system; but if it cannot, 
it may pass the event to its parent window for processing. Because the events 
pass from the bottom, the current window object, to the top this type of event 
handling is called bottom up. 

When writing OpenZinc programs for different operating environments, be sure to 
take into account how each environment processes events, because if we 
write a OpenZinc program to deploy on DOS and Windows, each environment 
handles events differently than the other. For example, if we write a OpenZinc 
program for DOS that traps keyboard events, no matter what window object 
is current, we might create a window that traps events since all events go 
through the window. This does not hold trueRegion for Windows, so if we run our 
program under Windows, the window will only trap messages if no other 
window objects are current. Be sure to take into account event handling for 
each target operating environment, so that you can write your programs to 
handle events properly. 

Executable So you can easily identify the environment for which you've compiled your 
naming executable, OpenZinc maintains the following naming conventions for executa-
conventions bies: 

TABLE 7. Naming conventions for executables 

48 Getting Started with OpenZinc Programming 



Shipping Be sure to include the following run-time files when you ship your finished 
applications applications: 

• .DAT files (generated by OpenZinc Designer) required by your applications. 

• I18N.DAT required by globalized applications. 

• UNICODE.FNT required by double-byte (Unicode) applications run-
ning in DOS graphics mode. 

YOU MAY NOT INCORPORATE INTO YOUR APPLICATION OR 
DISTRIBUTE AS PART OF YOUR APPLICATION ANY PORTION 
OF OpenZinc DESIGNER WITHOUT THE EXPRESS WRITTEN PER-
MISSION OF OpenZinc. 

DOS 

Look and feel In DOS, a OpenZinc application follows IBM's SAA/CUA specification for the 
display and input devices. Using OpenZinc libraries, we can compile OpenZinc pro-
grams that run in DOS text and graphics, in both real and protected modes. 

DOS libraries The DOS version of OpenZinc has been compiled into a single library file called 
DOS_ZIL.LIB. When creating a DOS application, we must link 
DOS_ZIL.LIB, and, if our program is designed to run in DOS graphics 
mode, the appropriate graphics display class library as well, into the .EXE 
file. 

Compiler When creating a DOS application, select the following compiler options: 
options 

DOS program. If your compiler can compile executables for other environ-
ments in addition to DOS, select the compiler option to create the application 
as a DOS executable program. 

Large model. Set the compiler to the large memory model. Since OpenZinc only 
uses the large memory model, we must ship all our applications with the 
large memory model. 

See "Appendix A—Compiler Considerations" for more information regard-
ing compiler-specific options. 

Getting Started with OpenZinc Programming 49 



Writing Multiplatform Programs 

main( ) Ordinary C++ programs begin with calling m a i n ( ) as the first function. 
OpenZinc-based applications for DOS are no different. We may create the m a i n ( ) 

function in our DOS programs by using the UI_APPLICATION class, 
which contains a main( ) function, and also initializes the display, Event 
Manager, and Window Manager. Or we may create our own m a i n ( ) function 
and initialize the display, Event Manager, and Window Manager by hand. 

Windows 

Look and feel In Windows, a OpenZinc application is an actual Windows application built with 
actual Windows objects. When writing OpenZinc programs, we have full access 
to the Windows API and Windows resources, including writing Win32 appli-
cations that run under the Win32s extensions for Windows 3.1 and Windows 
NT. 

W i n d o w s The Windows version of OpenZinc has been compiled into a single library file 
l ibraries called WIN_ZIL.LIB, and a Windows NT library file called WNT-

_ZIL.LIB. When creating a Windows application, we must link WIN-
_ZIL.LIB, or, if we're compiling a program for Windows NT, 
WNT_ZIL.LIB, into the .EXE file. 

Compi ler When creating a Windows application, be sure to select the following com-
opt ions piler options: 

Windows application. If your compiler can compile applications for other 
environments in addition to Windows or Windows NT, select the compiler 
option to compile the program into a Windows or Windows NT executable. 

Large model. Set the compiler option to compile using the large memory 
model. Since OpenZinc ships only with the large memory model, all Windows 
programs must also use the large memory model. 

See "Appendix A—Compiler Considerations" for more information regard-
ing compiler-specific options. 

50 Getting Started with OpenZinc Programming 



WinMain( ) Ordinary C++ programs begin with main() as the first function. However, 
when writing OpenZinc programs for Windows or Windows NT, we create instead 
a function called WinMain(), which Windows uses to begin executing an 
application. Here is the definition of WinMain(): 

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevInstance, 
LPSTR lpszCmdLine, int nCmdShow); 

We can create the WinMain() function two ways. The first is to use 
UI_APPLICATION::Main( ), which contains the WinMain( ) function, 
and also initializes the display, Event Manager, and Window Manager. OpenZinc 
recommends using UI_APPLICATION::Main( ) to promote portability 
between operating environments and to ease program design. 

The second way is to create the WinMain() function in our program and 
initialize the display, Event Manager, and Window Manager by hand. The 
following code sample demonstrates this technique: 

Getting Started with OpenZinc Programming 51 



Writing Multiplatform Programs 

OS/2 

In OS/2, a OpenZinc program is an actual OS/2 application built with actual OS/2 
objects. When writing an OS/2 application, we have full access to the OS/2 
API and OS/2 resources. 

The OS/2 version of OpenZinc has been compiled into a single library file called 
OS2_ZIL.LIB. When creating an OS/2 application, we must link 
OS2_ZIL.LIB into the .EXE file. 

Ordinary C++ programs begin with calling main() as the first function. 
OpenZinc-based applications for OS/2 are no different. We may create the main() 

function in our OS/2 programs by using the UI_APPLICATION class, 
which contains a main( ) function, and also initializes the display, Event 
Manager, and Window Manager. Or we may create our own main() function 
and initialize the display. Event Manager, and Window Manager by hand. 

Macintosh 

Look and feel In Macintosh, a OpenZinc program is an actual Macintosh application built with 
actual Macintosh objects. When writing a Macintosh application, we have 
full access to the Macintosh Toolbox and Macintosh resources. 

Macintosh The Macintosh version of OpenZinc has been compiled into several library files, 
libraries listed in the table below. 

Look and feel 

OS/2 library 

main() 

52 Getting Started with OpenZinc Programming 



When creating a Macintosh application, we must link some or all of these 
libraries into the .EXE file, depending on what functionality we need in our 
application. For example, if we wanted to use the UI_APPLICATION class 
in our Macintosh program, we would include the library UI_Application. 

main( ) Ordinary C++ programs begin with calling main() as the first function. 
OpenZinc-based applications for Macintosh are no different. We may create the 

main( ) function in our Macintosh programs by using the 
UI_APPLICATION class, which contains a main() function, and also ini-
tializes the display, Event Manager, and Window Manager. Or we may create 
our own main() function and initialize them by hand. 

OSF/Motif 

In OSF/Motif, a OpenZinc application is an actual OSF/Motif application built 
with actual OSF/Motif widgets. When writing OpenZinc programs, we have full 
access to the OSF/Motif toolkit, Xt Intrinsics, X Library, and all X resources. 

The OSF/Motif version of OpenZinc has been compiled into a single library file 
called lib_mtf_zil.a. When writing an OSF/Motif program, we must link 
lib_mtf_zil.a, as well as libXm.{a, so, si}, libXt, l ibXll , and the Xm 
library, into the executable file. We may have to change some source code to 

Look and feel 

OSF/Motif 
libraries 

Getting Started with OpenZinc Programming 53 



Writing Multiplatform Programs 

use the OSF/Motif Key on hardware platforms not directly supported by 
OpenZinc. See the README file for a list of currently supported hardware plat-

forms. 

main( ) Ordinary C++ programs begin with calling main( ) as the first function. 
OpenZinc-based applications for OSF/Motif are no different. However, the 

main() function for OSF/Motif does require the standard argc and argv 
parameters. When the OSF/Motif display is created, these parameters are 
passed to the Xt Intrinsic initialization routines, which allow OpenZinc applica-
tions to use X command-line options, such as other displays, colors, fonts, 
and so forth. 

There are two ways to implement the main( ) function in our OSF/Motif 
programs. The first is to use the UI_APPLICATION class, which provides 
the main( ) function, and also initializes the display. Event Manager, and 
Window Manager. Or we may create our own main( ) function and initialize 
the display, Event Manager, and Window Manager by hand. 

In addition to the files specified at the beginning of this chapter, be sure to 
include this additional run-time file when you ship your finished Motif 
applications: 

• ZincApp.ad, which provides your OpenZinc applications with defaults. 

Shipping 
applications 

Curses 

Look and feel In Curses, a OpenZinc application uses the Curses library to perform terminal 
screen I/O. 

Curses libraries The Unix Curses version of OpenZinc has been compiled into a single library file 
called lib_crs_zil.a. When writing a Curses program, we must link 
lib_crs_zil.a into the executable file. We may have to change some source 
code to use the Curses Key on hardware platforms not directly supported by 

OpenZinc. See the README file for a list of currently supported hardware plat-
forms. 

54 Getting Started with OpenZinc Programming 



main( ) Ordinary C++ programs begin with calling main( ) as the first function. OpenZinc 
applications for Curses are no different. 

There are two ways to implement the main( ) function in our Unix Curses 
programs. The first is to use the UI_APPLICATION class, which provides 
the main( ) function, and also initializes the display, Event Manager, and 
Window Manager. Or we may create our own main() function and initialize 
the display, Event Manager, and Window Manager by hand. 

NEXTSTEP 

In NEXTSTEP, a OpenZinc program is an actual NEXTSTEP application built 
with actual NEXTSTEP objects. When writing a NEXTSTEP application, 
we have full access to NEXTSTEP and its resources, with the exceptions of 
drag and drop and object linking. 

The NEXTSTEP version of OpenZinc has been compiled into a single library file 
called lib_nxt_zil.a. When creating a NEXTSTEP application, we must link 
lib_nxt_zil.a into the executable. 

Ordinary C++ programs begin with calling main() as the first function. 
OpenZinc-based applications for NEXTSTEP are no different. We may create the 

main( ) function in our NEXTSTEP programs by using the 
UI_APPLICATION class, which contains a main() function, and also ini-
tializes the display, Event Manager, and Window Manager. Or we may create 
our own main( ) function and initialize the display, Event Manager, and 
Window Manager by hand. 

Event handling A OpenZinc window object running under NEXTSTEP contains an Event( ) 
function that processes messages using NEXTSTEP responder methods such 
as -mouseDown, as well as delegate methods for classes such as Window. 

Look and feel 

NEXTSTEP 
library 

main() 

Getting Started with OpenZinc Programming 55 



Writing Multiplatform Programs 

Conclusion 
In this chapter, we discussed how OpenZinc enables us to write programs for mul-
tiple operating environments. Since different operating environments require 
different main() functions, writing programs for multiple operating environ-
ments can be eased with UI_APPLICATION::Main( ). Each operating 
environment requires that we use certain libraries, and that we take into 
account differences in event handling between environments. 

In the next chapter, we'll discuss event handling in greater detail and explain 
more how top-down and bottom-up event handling works. 

56 Getting Started with OpenZinc Programming 



Event Flow and 
Mapping 

in the last chapter, we discussed how OpenZinc enables us to write programs for 
multiple operating environments. In this chapter, we'll discuss how events 
flow through the system and how OpenZinc maps events. As stated earlier, OpenZinc 
programs are event driven, which means that at their core they contain a 
main event loop which spins in the background, catching events and dis-
patching them to the appropriate places. In OpenZinc, each window object con-
tains an Event( ) function that handles events as appropriate for the target 
operating environment. And each environment may handle events in a top-
down or bottom-up manner. What follows is a discussion of how this works. 

Getting Started with OpenZinc Programming 57 



Event Flow and Mapping 

Top down 
In top down environments, the Event Manager receives events from input 
devices such as the keyboard, mouse, and perhaps the operating environ-
ment, and places the events in the event queue. The main event loop takes 
the event from the queue and sends it to the Window Manager, which pro-
cesses it with its own Event() function. Then the object determines whether 
or not it can respond to the event. If it can, it performs an action and returns 
control to the main event loop; but if it cannot, it passes the event to the cur-
rent window, which processes the event with its own Event() function. If it 
can, the window performs an action, but if it cannot, it passes it to the current 
window object, which responds to the event. This continues until an object 
processes the event or when the event comes to an object with no children. 

The following diagram represents event flow in a program running under a 
top down environment. The program contains two windows; the current win-
dow contains a UIW_GROUP object, which in turn contains several check-
box objects, while the noncurrent window contains no objects. The Window 
Manager, the current window, and the current object maintain three pointers, 
first, current, and last, which are the first object, the current subobject, and 
the last object below each. 

Here's how events flow when the user presses a key. 

1. First, the keyboard press sends an event to the Window Manager, which 
tries to interpret the event and fails. It then passes the event to the current 
window. 

2. The window tries to inteipret the event and fails. It then passes the event 
to the UIW_GROUP object since it is the current object on the window. 

3. The UIW_GROUP object tries to interpret the event and fails. It then 
passes the event to the checkbox object that is current in the group. 

4. The checkbox tries to interpret the event by looking in the event map 
table. If the event maps into an event it can process, it does so. 

5. Then the subobject returns a control code (not shown) indicating whether 
or not it processed the event. 

58 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 59 



Event Flow and Mapping 

Bottom up 
In bottom up environments, although the operating environment processes 
events from input devices such as the keyboard and mouse that are related to 
the system, the Event Manager still receives the input first, turns it into a 
OpenZinc event, and hands it to the Window Manager. 

If the event isn't a native event, the event will flow from top to bottom as it 
does in a top down environment. But when it is a native event, the Window 
Manager hands the event to the system. When the system processes the 
event, it sends it to the current low level window object, which determines 
whether it will respond to the event. If it responds to the event, it returns con-
trol to the operating system; but if it doesn't, it may pass the event to its par-
ent window, which then may process the event with its own Event( ) 
function. Because the events pass from the current window object on the bot-
tom, to the top, this type of event handling is called bottom up. 

The following diagram represents event flow in a program running under a 
bottom up environment. Again, the program contains two windows; the cur-
rent window contains a UIW_GROUP object, which in turn contains sev-
eral checkbox objects, while the noncurrent window contains no objects. 

Here's how events flow when the user presses a key. 

1. First, the key press causes the Event Manager to send an event to the 
Window Manager, which tries to interpret the event and fails. It then 
passes the event to the operating environment. 

2. The operating environment, in a black box, sends the object to the current 
subobject. 

3. The checkbox tries to interpret the event by looking in the event map 
table. If the event maps into an event it can process, it does so. 

60 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 61 



Event Flow and Mapping 

When writing OpenZinc programs for different operating environments, be sure to 
take into account how each environment processes events, because if we 
write a OpenZinc program to deploy on DOS and Windows, both environments 
handle events different from each other. For example, if we write a OpenZinc pro-
gram for DOS that traps keyboard events, no matter what window object is 
current, the window itself gets events. This does not hold trueRegion for Windows, 
so if we run our program under Windows, the window will only process 
events if the operating environment thinks it ought to get them. Be sure to 
take into account event handling for each target operating environment, so 
that you can wrtite your programs to handle events properly. 

Event processing 
Here's how events get processed in OpenZinc. When either the Window Manager 
or the black box dispatches an event to an object, C++ ensures that it gets 
sent to the most derived object. Notice in the following diagram that the 
most derived object, the one that we derive from an existing OpenZinc object, 
receives the event first. If our object's Event( ) function can't process the 
event, it should send it to the next most derived object, and so on. The bene-

62 Getting Started with OpenZinc Programming 



fit is that we can extend OpenZinc—because we know that our object can receive 
an event before any other predefined object, we can add custom functionality 
to our objects that override OpenZinc functionality. 

Here's what should happens when derived objects process events: 

1. Our custom object receives an event for processing. 

2. If the most derived object, our custom object, cannot process that event, 
it passes it up to the next most derived object, UIW_VT_LIST, for pro-
cessing. 

3. If UIW_VT_LIST cannot process that event, it passes it up to the next 
most derived object, UIYV_WINDOW, for processing. 

4. If UIW_WINDOW cannot process that event, it passes it up to the next 
most derived object, UI_WINDOW_OBJECT, for processing. 

5. If UI_WINDOW_OBJECT cannot process that event, it passes it up to 
the operating system for processing (if applicable), or returns a control 
code indicating it could not process the event. 

Getting Started with OpenZinc Programming 63 



Event Flow and Mapping 

Event map table 
In OpenZinc, event map tables list important events that input devices can send, 
and how OpenZinc objects interpret those events. OpenZinc's event mapping conforms 
to the key assignments of each operating environment's specifications. For 
example, a OpenZinc application running under Windows would conform to 
IBM's Common User Access Panel Design and User Interaction specifica-
tion. And a OpenZinc application running under NEXTSTEP would conform to 
NeXT's user interface guidelines. 

Here's how map tables work. The following portions of eventMapTable, 
which is a static table accessed by UI_WINDOW_OBJECT::^v^rMrt/?r-
able, define how a window object interprets events generated by the key-
board and mouse: 

static UI_EVENT_MAP eventMapTable[] = { 

{ ID_WINDOW_OBJECT,L_NEXT,E_KEY,TAB }, 
{ ID_WINDOW_OBJECT,L_PREVIOUS,E_KEY,BACKTAB }, 
{ ID_WINDOW_OBJECT,L_SELECT,E_KEY,ENTER }, 

{ ID_WINDOW_OBJECT,L_CONTINUE_SELECT,E_MOUSE,M_LEFT }, 

// End of array. 
{ ID_END, 0, 0, 0 } 

}; 
An event map table entry is composed of the identification for the type of 
object, the logical event, the device type that produced the message, and the 
raw scan code of the event. In our example, a window object will process an 
L_NEXT message when a user presses the <Tab> key. 

Not only does OpenZinc's event mapping allow different devices to generate the 
same logical message, but it also allows different objects to interpret the 
same event in different ways. This is a strong benefit to programming in 

OpenZinc. Because each object can respond differently to events, we don't have 
to write code to decipher how each object should behave in context of our 
program; we need only tell the object to perform a method appropriate to 
how it operates. 

For example, the following portion of an event map table defines how a 
string object will interpret events. 

{ ID_STRING,L_BEGIN_MARK,E_MOUSE,M_LEFT | M_LEFT_CHANGE}, 
{ ID_STRING,L_CONTINUE_MARK,E_MOUSE,M_LEFT}, 
{ ID_STRING,L_END_MARK,E_MOUSE,M_LEFT_CHANGE}, 

64 Getting Started with OpenZinc Programming 



A string interprets a click on the left mouse button as a mark operation 
instead of a select operation. If a string object couldn't respond differently, it 
would have to override the select operation in order to set the mark opera-
tion, causing us to write more code than necessary. 

Event mapping When the object receives an event, the mapping algorithm walks through the 
algorithm map table and searches for the best match according to the object's and the 

device's identification, the raw scan code, and the input modifier, usually the 
keyboard shift state, associated with the event. For example, if the user 
presses the left mouse button while the cursor is positioned in a string object, 
the application will scan the map table until the best possible match is found, 
shown below: 

{ ID_STRING,L_BEGIN_MARK,E_MOUSE,M__LEFT | M_LEFT_CHANGE } 

As a result, the mark operation will begin within the string object. When the 
application interprets the L_END__MARK logical message, the mark opera-
tion will be finished. 

Palette mapping OpenZinc uses palette mapping to provide a way for objects to paint themselves 
when in different states. Palette mapping takes the state of an object and 
gives it a palette to use to paint itself. 

UI_PALETTE, the OpenZinc palette class, is the set of colors an object uses 
when drawing itself; the colors it uses depends on the mode of the display, 
such as color text mode, color graphics mode, mono text mode, mono graph-
ics mode, and so forth. An object gets a palette when it draws itself. We can 
describe a palette in terms of its graphics mode and foreground and back-
ground color; for example, a palette may contain a red foreground and a blue 
background for color graphics mode. 

UI_PALETTE_MAP contains an object ID, such as ID_WINDOW_OBJECT, ID_WINDOW, or ID_LIST_ITEM: a logical Palette, such as PM_ACTIVE, PM_SELECTED, PM_CURRENT, PM_ANY; and the corresponding 
UI_PALETTE. 

A palette map table is a lookup table that is an array of UI_PAL 
ETTE_MAPs. 

Getting Started with OpenZinc Programming 65 



Event Flow and Mapping 

When a WOS_OWNERDRAW object should draw itself, OpenZinc calls its Draw-
Item( ) function. The control code, passed to the Drawltem() function, tells 
the object why it should draw—for example, it may receive an S_CURRENT 
control code. The object uses the control code when calling the OpenZinc LogicalPalette( ) function, which will look at the control code and the current 
state of the object in woStatus, such as active, current, inactive, selected, and 
so forth. LogicalPalette( ) will use the control code and current status to 
come up with a logical palette, determined by ORing together PM_ flags. 

LogicalPalette( ) will call UI_PALETTE_MAP: :MapPalette( ), passing 
in the object's palette map table, the LogicalPalette determined above, and 
five IDs, which are found in windowID. MapPalette() searches the palette 
map table, comparing IDs and the logical palette to find the appropriate 
UI_PALETTE. This UI_PALETTE is used when calling the display's 
drawing functions. 

Most graphics libraries have special ways of using colors, and to make it eas-
ier for us to let us use the colors we want in our OpenZinc programs, OpenZinc pro-
vided concepts called palettes, palette maps, and palette map tables. For 
example, the UI_BGI_DISPLAY has a protected member function called 
MapColor() that maps OpenZinc UI_PALETTE structure information to colors 
understood by the Borland graphics library. Below is how this works: 

1. Call the MapColor() function with two parameters, palette, a pointer to 
a UI_PALETTE class, and foreground, which tells us whether we want 
the foreground or background color. 

COLOR UI_BGI_DISPLAY::MapColor(const UI_PALETTE *palette, 
int foreground) 

{ 
2. Next, we determine the type of display our program is running in, and get 

the appropriate number of colors from the palette. 

// Match the color request based on the type of display, 
if (maxColors == 2) 

return (foreground ? palette 
->bwForeground : 

palette->bwBackground); 

else if (maxColors < 16) 
return (foreground ? palette->grayScaleForeground : 

palette->grayScaleBackground); 
return (foreground ? palette->colorForeground : 

palette->colorBackground); 

66 Getting Started with OpenZinc Programming 



Whenever a window object draws information on the screen, it must map the 
map logical values into OpenZinc values. To do so, it uses 
UI_WINDOW_OBJECT::MapPalette() to get the palette from the sys-
tem. MapPalette() then uses a specified mapTable to match the OpenZinc value 
to a system palette. OpenZinc uses three predefined map tables for palettes called 
normalPaletteMcipTable, helpPaletteMapTable, and errorPaletteMapTable. 
All window objects use normalPaletteMcipTable, the UI_HELP_SYSTEM 
window uses helpPaletteMapTable, and the UI_ERROR_SYSTEM win-
dow uses the errorPaletteMapTable. 

Conclusion 
In this chapter, we've discussed how events flow through the system, and 
how OpenZinc maps events and palettes. In the next chapter, we'll learn about 

OpenZinc's library classes, and how they provide a kind of periodic table of 
objects with which we can build new objects. 

Getting Started with OpenZinc Programming 67 



Event Flow and Mapping 

68 Getting Started with OpenZinc Programming 



Library Classes 

in the last chapter, we discussed how events flow and how OpenZinc maps 
events. In this chapter, we'll learn about what OpenZinc calls its library classes. 
Library classes are the molecules and elements that make up OpenZinc programs. 

Some of OpenZinc's library classes contain properties and behaviors that are so 
basic they cannot be reduced—these are the OpenZinc elements. Others, however, 
are comprised of other OpenZinc library classes—these are the OpenZinc molecules 
that combine OpenZinc elements to create entirely new properties and behaviors. 
For example, lists and list elements are the smallest units of OpenZinc that contain 

Getting Started with OpenZinc Programming 69 

Chapter 6 



Library Classes 

its own properties and behaviors, whereas the Event Manager and Window 
Manager consist of lists and list elements. Here's a table that describes 

OpenZinc's library classes. 

Base classes—OpenZinc's periodic table 
OpenZinc contains two base classes: UI_ELEMENT and UI_LIST. OpenZinc calls 
UI_ELEMENT and UI_LIST base classes because they do not derive from 
other classes. In fact, we can think of OpenZinc's base classes like a periodic table 
of objects that consists of two elements. Below is the definition of these two 
classes and their public and protected members: 

class EXPORT UI_ELEMENT 
{ 

friend class EXPORT UI_LIST; 
public: 

virtual ~UI_ELEMENT(void); 
int Listlndex(void); 
UI_ELEMENT *Next(void); 
UI_ELEMENT *Previous(void); 

protected: 
UI_ELEMENT *previous,*next; 

UI_ELEMENT(void); 
}; 
class EXPORT UI_LIST 
{ 

70 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 71 

The Event Manager has two main classes: UI_DEVICE and UI_EVENT_-
MANAGER. The UI_DEVICE class derives from UI_ELEMENT and is 
used to define the operation of input devices. Its derivation from UI_ELE-
MENT allows other classes to be grouped together, in the form of a list. 
Since the UI_EVENT_MANAGER class derives from UI_LIST, it is able 
to maintain a list of all attached devices. This derivation also allows the 
Event Manager to control the operation and flow of event information from 
the input devices. 

The Window Manager has three major classes: UI_WINDOW_OBJECT, 
UI_WINDOW_MANAGER, and UIW_WINDOW. The LI WINDOW-
O B J E C T class derives from UI_ELEMENT, and serves as the base class 
for all window objects, such as buttons, icons, and menu items. Because 
UI_WINDOW_OBJECT derives from UI_ELEMENT, we can combine 
window objects inside a parent window. Similarly, because UI_WINDOW_MANAGER derives from UIW_WINDOW, it can group window 
objects in a list. 



Library Classes 

The UIW_WINDOW class is unique because it acts like an element when 
attached to the Window Manager, and it acts like a list because it contains 
window objects such as a border, title bar, and so forth. Appropriately, this 
class derives from both the UI_ELEMENT base class through the 
UI_WINDOW_OBJECT class and the UI_LIST base class. 

We've been discussing two base classes, UI_ELEMENT and UI_LIST. 
Technically, however, OpenZinc has a third base class called UI_DISPLAY, 
which provides to all of OpenZinc's displays some basic behaviors and draw func-
tions. But we will use this class only when deriving a display class, so we'll 
spend most of our time talking about the other base classes. 

UI_ELEMENT The UI_ELEMENT class defines an element by what it can do, which is 
point to other elements directly before or after it in a list. It's meaningless to 
create an instance of UI_ELEMENT, because the class merely describes the 
basics of what elements can do, rather than describing more specialized 
things, such as collecting input from users or displaying themselves on 
screen. These things are left to classes such as input devices and window 
objects that derive from UI_ELEMENT and thereby inherit the basic 
behavior of elements and then add more specialized behavior. We'll explain 
more of what's going on under the hood in the next chapter when we discuss 
abstract classes. 

The UI_ELEMENT class has two member functions, Previous( ) and 
Next(), which allow an element to point to the element directly before or 
after it in a list. Here's an example of how this works. The following code 
adds three input devices, a keyboard, mouse, and cursor to the Event Man-
ager object, which we'll discuss later in this chapter. 

eventManager->Add(keyboard); 
eventManager->Add(mouse); 
eventManager->Add(cursor); 

If the mouse were the current object, Previous() would return a pointer to 
the keyboard, whereas a call to Next() would return a pointer to the cursor. 

UI_LIST The UI_LIST class defines a list by what it can do, which is contain ele-ments. While you can create an instance of UI_LIST, it usually doesn't 
make much sense because the class merely describes the basics of what lists 
can do, rather than the more specialized things like receiving and responding 
to input devices or display a collection of windows and window objects on 

72 Getting Started with OpenZinc Programming 



the screen. These things are left to objects such as the Event Manager and the 
Window Manager that derive from UI_LIST, which inherit the basic behav-
ior of lists and then add some more specialized behavior. 

The UI_LIST class has four member functions, First(), Last(), Add() , and 
Subtract^ ), as well as + and -, which are overloaded operators that allow us 
to add and delete elements to and from the list without using the correspond-
ing functions. Predictably, the First() and Last() member functions retrieve 
the first or last element in the list. For example, First() would return a 
pointer to the keyboard object, and Last() would return a pointer to the cur-
sor. 

The Add( ) and Subtract() member functions, along with the + and - oper-
ator overloads, add or subtract list elements to and from the list object. For 
example, the two code samples below are equivalent. 

eventManager->Add(keyboard); 
eventManager->Add(mouse); 
eventManager->Add(cursor); 

or 

*eventManager 
+ keyboard 
+ mouse + cursor; 

EventManager 

We introduced the Event Manager in "Introduction to OpenZinc" on page 11, 
where we described it as OpenZinc's infrastructure for handling events and system 
messages. Now we can elaborate by saying UI_EVENT_MANAGER, the 
main class of the Event Manager portion of OpenZinc, uses the list functions of 
UI_LIST and adds a queueBlock member variable to store events. 

Input devices The Event Manager's UI_LIST contains input devices, such as keyboards 
and mouses, that collect events as the user works with the application. OpenZinc 
defines how these input devices work in classes called UID_KEYBOARD 
and UID_MOUSE, which derive from UI_DEVICE. UI_DEVICE is an 
abstract class that defines the structure of input devices and how they work, 

Getting Started with OpenZinc Programming 73 



Library Classes 

but which must be derived from. The UI_DEVICE class derives from the 
UI_ELEMENT, which allows us to add input devices to the Event Man-
ager's list of input devices, and contains virtual member functions not 
present in U I _ E L E M E N T called Even t ( ) and Poll() , which control how 
input devices operate. These functions also allow input devices to place 
events in the event queue, which we'll discuss later in this section. 

We can use the Event( ) function to send a message to an input device to 
change its behavior. OpenZinc applications pass this message in event.type. Here 
are some sample messages we can send to input devices: 

D_OFF. Tells the device to stop placing events into the Event Manager's 
event queue. It will send no further input information until a D_ON message 
is received. 

D_POSITION. Changes the position of a device. For example, if the device 
receiving this message were a cursor, the position of the blinking cursor 
would be changed to the screen position given by event.position. 

DM_WAIT. Changes the mouse pointer to an hourglass. The mouse is the 
only input device that uses this message. 

Where the E v e n t ( ) function controls how input devices operate, the PoIl() 
function allows each device to place events in the Event Manager's event 
queue. For example, the UID_KEYBOARD class uses the Pol l ( ) function 
to check if the user has pressed any keys. If so, the Pol l ( ) function places the 
resulting event in the Event Manager's event queue. 

T h e event q u e u e Just as the Event Manager derives from UI_LIST and adds additional 
behavior, so does the event queue, a member variable of type 
UI_QUEUE_BLOCK, which we'll discuss in just a moment. The queue-
Block member variable stores all unprocessed events. 

Three major classes make up the event queue: the UI_EVENT structure, the 
U I _ Q U E U E _ E L E M E N T class, and the UI_QUEUE_BLOCK class. 

74 Getting Started with OpenZinc Programming 



The UI_EVENT structure contains the event, the type of which depends on 
the type of class that generated the message. For example, 
UID_KEYBOARD sets the following event information: 

• _event.type always contains the value E_KEY. This lets all receiving 
objects know that event.key contains any related keyboard information. 

• __event.rawCode contains the keyboard's raw scan code. 

• _event.modifiers is a flag field indicating the keyboard shift states. 

• _event.key contains other keyboard information, such as the shift state 
and the key's value. 

The UI_QUEUE_ELEMENT and UI_QUEUE_BLOCK classes store 
event information in a list block. The UI_QUEUE_ELEMENT class 
derives from UI_ELEMENT and contains the event information. 

The UI_QUEUE_BLOCK class derives from UI_LIST_BLOCK and 
stores UI_QUEUE_ELEMENT objects. Though it's natural for OpenZinc to use 
its own UIJLIST_BLOCK class to build the UI_QUEUE_BLOCK class, 
OpenZinc also gains in performance through using these classes, which allow the 
event queue to buffer event information before the application processes it. 
By buffering events in a list block, OpenZinc doesn't allocate and destroy mem-
ory every time it receives or dispatches a message, an slow process, thereby 
increasing performance. 

Window Manager 

The class UI_WINDOW_MANAGER controls the flow of events to all 
windows and manages the front to back ordering of windows (called the z-
order). UI_WINDOW_MANAGER derives from UIW_WINDOW and 
uses a virtual Event() member function to process messages it receives from 
the main event loop. 

Window objects The UIW_WINDOW part of the Window Manager contains a list of active 
windows, and each window contains a list of its window objects. Since win-
dow objects derive from UI_ELEMENT, they know how to belong to the 
list that the Window Manager maintains. 

Getting Started with OpenZinc Programming 75 



Library Classes 

Each OpenZinc window object derives from the UI_WINDOW_OBJECT base 
class, which defines the structure and behavior of window objects. 
UI_WINDOW_OBJECT derives from the UI_ELEMENT base class, 
adding the necessary functionality to display itself and to process events in 
an Event() virtual member function. 

The Event() function processes logical or system events sent to a window 
object. Here are some sample messages that window objects can interpret: 

S_CREATE. Tells the window object to initialize its internal information, 
such as its size and position within a parent window. The S_CREATE mes-
sage is sent to all of the window objects associated with a window whenever 
the window is attached to the Window Manager. 

S_DISPLAY_ACTIVE. Tells the window object to display itself in its active 
state. The complementary message is S_DISPLAY_INACTIVE. 

L_BEGIN^SELECT. Begins the selection process of a window or window 
object. For example, if the user presses the left mouse button, the selection of 
an object is initiated. When the mouse button is released, an 
L_END_SELECTis received, and the selection process is completed. 

Event member The UI_WINDOW_MANAGER:Event() member function sends events it 
functions receives from the main event loop to windows. For example, if an applica-

tion contained two overlapping windows, the Window Manager would auto-
matically route normal event information to the top window, but pass a 
mouse click to the bottom window if the user clicked the mouse on that win-
dow. 

The Window Manager and window objects understand three types of events: 

Logical Events. Logical events are the logical interpretation of a raw event 
that was generated by an input device. For example, a window would inter-
pret a mouse click as the logical event L_BEGIN_SELECT.\ or "begin select-
ing something"; but a text field object would interpret the same mouse click 
as L_BEGIN_MARK, or "begin marking text." Logical events have an L_ 
prefixand generally should not be sent to an object. They are intended to be 
interpreted. 

76 Getting Started with OpenZinc Programming 



System Events. The Window Manager, or window objects as the result of a 
previous event, generate system events. For example, when a window is 
added to the Window Manager, the Window Manager sends the window an 
S_CREATE event. System events have an S_ prefix and are intended to be 
generated and sent directly to objects or placed directly on the event queue. 

Environment-specific. The operating system or host environment in which 
the OpenZinc application is running generates these events. For example, when 
running under Windows, OpenZinc objects understand and interpret WM_ mes-
sages such as WM_PAINTor many other Windows messages. The same 
holds trueRegion for OpenZinc objects running under other operating environments as 
well. 

Help system 
The help system, designed to provide help for both general and specific fea-
tures of an application, contains one important virtual function, 
Display Help(): 

class EXPORT UI_HELP_SYSTEM { 
public: 

virtual void DisplayHelp(UI_WINDOW_MANAGER *windowManager, 
UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT); 

The help window system's DisplayHelp() member function provides con-
text sensitive help information during an application. Each help context con-
tains a title, shown on the title bar, and a help message, shown in the text 
portion of the window. The helpContext argument is used as an identifier to a 
unique title/message pair. 

Getting Started with OpenZinc Programming 77 



Library Classes 

Error system 
The error system brings up a window to display error information whenever 
an error is detected. The error system inherits one important virtual function, 
ReportError(). 

The UI_ERROR_SYSTEM class uses a UIW_WINDOW object or an 
environment specific error handling mechanism to present error information 
to the screen. 

The error system's ReportError() member function is used to display infor-
mation about the type of error encountered during an application. This func-
tion takes printf() style arguments that are used in the text portion of the 
window. 

Screen displays 
Display classes provide common display primitive functionality to the OpenZinc 
programmer but handle the output using the low-level graphics or text func-
tions. Each display class derives from the UI_DISPLAY base class. OpenZinc 
defines the following display classes: 

UI_BGI_DISPLAY. A graphics display that uses the Borland BGI graphics 
routines to display information to the screen. The UI_BGI_DISPLAY class 
provides support for CGA, EGA, VGA, and Hercules monochrome display 
adapters running in graphics mode. 

UI_GRAPHICS_DISPLAY. A DOS graphics display that uses the GFX 
graphics libraries by C-Source, included with OpenZinc, to display information to 
the screen. UI_GRAPHICS_DISPLAY supports CGA, EGA, VGA, 
SVGA, and Hercules monochrome display adapters running in graphics 
mode. 

UI_MACINTOSH_DISPLAY. Uses the Macintosh's QuickDraw routines 
to display information on screen. 

UI_XT_DISPLAY. Uses the XI1 drawing primitives to display information 
using the X window system. Used by the OSF/Motif and X Keys. 

78 Getting Started with OpenZinc Programming 



UI_MSC_DISPLAY. Uses the Microsoft MSC graphics routines to display 
information. Supports CGA, EGA, VGA, SVGA, and Hercules mono-
chrome display adapters in graphics mode. 

UI_MSWINDOWS_DISPLAY. Uses the Microsoft Windows GDI graph-
ics routines to display information. 

UI_NEXTSTEP_DISPLAY. Uses NEXTSTEP'S Display PostScript Win-
dow Server to display information. 

UI_OS2_DISPLAY. Uses OS/2 GPI graphics routines to display informa-
tion. 

UI_TEXT_DISPLAY. A compiler-independent text display used in DOS 
and Curses. The UI_TEXT_DISPLAY class supports MDA, CGA, EGA, 
and VGA display adapters in the following text modes: 

• 25 line x 80 column mode, 

• 25 line x 40 column mode, 

• 43 line x 80 column mode, and 

• 50 line x 80 column mode. 

This class supports snow checking on CGA monitors and IBM Top View. In 
turn, TopView supports Microsoft Windows and Quarterdeck DESQview 
environments. 

UI_WCC_DISPLAY. Uses the Watcom graphics routines to display infor-
mation. Supports CGA, EGA, VGA, SVGA, and Hercules monochrome dis-
play adapters in graphics mode. 

Other prog rammer-defined screen display objects. Any custom display 
object that derives from or conforms to the UI_DISPLAY base class. OpenZinc 
posts third-party display classes supporting other DOS graphics libraries on 
its BBS that OpenZinc customers are free to download. 

Region l ists— The DOS and Curses display classes derive from UI_REGION_LIST, 
D O S and Curses which contains functionality for keeping track of regions on the screen. 

When a program places an object on the screen under DOS or Curses, the 
display class reserves a drawing region for the object. As the program places 

Getting Started with OpenZinc Programming 79 



Library Classes 

more objects on the screen, the display class splits up the regions to allow 
more objects to display themselves without disturbing higher level objects, 
clipping screen regions according to an object's identification. 

Region lists have three main components: a UI_REGION structure, 
UI_REGION_ELEMENT objects, and a UI_REGION_LIST class. The 
UI_REGION structure contains the actual reserved region. The screen coor-
dinates are defined according to the mode of operation, with the top-left cor-
ner at {0, 0}. Here are some sample right-bottom coordinates for a screen, 
based on the type of display mode: 

The UI_REGION_ELEMENT and UI_REGION_LIST classes store the 
region information in elements, organized in a list. The UI_REGION_ELEMENT class derives from UI_ELEMENT and contains the 
actual region information as well as a unique identification: 

class EXPORT UI_REGION_ELEMENT : public UI_ELEMENT { 
public: 

SCREENID screenID; 

UI_REGION region; 
When a window is attached to the Window Manager, OpenZinc assigns it a unique 
value stored in its screenID member variable. In addition, the screen is rede-
fined to contain the window's region. This area is represented by a new 
UI_REGION_ELEMENT, where screenID is assigned the same value as 
the window's screen identification, and region is assigned the same area 
occupied by the window. The region variable is used later by display func-
tions to clip the boundaries of an object before any screen painting is per-
formed. For example, if two windows were attached to the screen and 

80 Getting Started with OpenZinc Programming 



information were painted to the background window, the background infor-
mation would be clipped so that the painted regions would not overlap the 
front window. Since all operating environments other than DOS and Curses 
handle clipping internally, their display classes do not derive from 
UI_REGION_LIST. In those environments, screenID is the handle 
assigned to the object by the operating system. 

Virtual display Virtual display member functions define an abstract method of drawing 
functions information to the screen. For example, all display classes have the 

Rectangle() member function. In text mode, a rectangle is drawn with either 
a single or a double line. In graphics mode, however, the same routine draws 
a single or double pixel rectangle. Virtual display member functions allow us 
to use drawing functions in all of OpenZinc's display modes by acquiring at run 
time basic information such as the display's resolution, boundaries, and so 
forth. 

Conclusion 

In this chapter, we learned about OpenZinc's library classes, the basic elements 
that combine to make up other classes. In the next chapter, we'll learn about 
how OpenZinc puts the advanced features of C++ to work across the entire appli-
cation framework. 

Getting Started with OpenZinc Programming 81 



Library Classes 

82 Getting Started with OpenZinc Programming 82 



Chapter 7 OpenZinc and C++ 

in the last chapter, we discussed how OpenZinc's library classes combine to 
make up other classes. In this chapter, we'll examine how OpenZinc uses C++ 
features to define classes, instantiate and destroy objects, and work with 
member variables and overloaded functions. We'll also learn how OpenZinc uses 
C++'s virtual functions to help objects respond to the right events. 

Note that this chapter is not a substitute for learning C++, and that OpenZinc 
depends heavily on the features of the language for many of its own features. 
This chapter gives its best results if we are already familiar with C++. 

Getting Started with OpenZinc Programming 83 



OpenZinc and C++ 

Class definitions 

How to design When OpenZinc's architects wrote the library classes in C++, they followed some 
classes explicit rules to make programming in OpenZinc logical and efficient. Here they 

are—if we follow them, too, we'll find understanding our code later on will 
be easier. 

1. Precede all C++ class definitions with the reserved word class; the envi-
ronment-specific identifier, ZIL_EXPORT_CLASS; and one of the 
OpenZinc prefixes UI_, UID_, UIW_, and ZAF_. 

The reserved word class tells the compiler that the definition not only 
contains structural information, but member functions, inheritance infor-
mation, and pointers to member functions as well. 

ZIL_EXPORT_CLASS, not part of the C++ language, is a OpenZinc type 
definition to allow us to use one set of source code when writing pro-
grams for multiple operating environments, a key benefit of OpenZinc. In 
Windows, for example, ZIL_EXPORT_CLASS is defined to be 
HUGE, so that OpenZinc defines class HUGE UI_ELEMENT, whereas in 
DOS, OpenZinc defines class UI_ELEMENT. Without 
ZIL_EXPORT_CLASS , we'd have to maintain one set of source for 
each environment we wanted to support. 

The prefix UI_ indicates a "User Interface" class, UID_ a "User Inter-
face Device" class, UIW_ a "User Interface Window object" class, and 
ZAF_ a "OpenZinc Application Framework" class. These prefixes allow us to 
have other C++ classes, such as list and list elements, without worrying 
that our definition conflicts with OpenZinc's. Some sample class definitions 
are given below: 

class ZIL_EXPORT_CLASS UI_ELEMENT 

class ZIL_EXPORT_CLASS UI_DEVICE: public UI_ELEMENT 

class ZIL_EXPORT_CLASS UIW_WINDOW : public UI_WINDOW_OBJECT, 
public UI_LIST 

class ZIL_EXPORT_CLASS ZAF_MESSAGE_WINDOW : public UIW_WINDOW 

2. Define public members first, then protected members, and private mem-
bers last. This way, we can find the member information we need without 
wading through the wrong variables and functions. 

84 Getting Started with OpenZinc Programming 



Any function can access public members, which are documented in the 
Programmer's Reference. Only instances of the class itself, objects 
derived from those classes, and objects that are friends of that class can 
access protected members, also documented in the Programmer's Refer-
ence. Last, only instances of the class itself or friend classes can access a 
private member variable; derived classes that are not friend classes may 
not access the private members of another class. Private members are not 
documented in any OpenZinc manual. 

Below, the UID_KEYBOARD class, which derives from the 
UI_DEVICE class, shows how this member access order is followed. 
Note that the UID_KEYBOARD class, since it derives from 
UI_DEVICE, could access UI_DEVICE 's public and protected mem-
bers; but since it's not a friend class of UI_DEVICE, it may not access 
any private members. 

class ZIL_EXPORT_CLASS UID_KEYBOARD : public UI_DEVICE { 

public: 
static EVENT_TYPE breakHandlerSet; 
UID__KEYBOARD (DEVICE_STATE state = D__ON) ; 
virtual ~UID_KEYBOARD(void); 
virtual EVENT_TYPE Event(const UI_EVENT &event); 

protected: 
virtual void Poll(void); 

}; 
3. Finally, place member variables and functions in separate logical groups. 

OpenZinc groups member variables according to a logical order such as byte 
boundary alignment, first use, most common usage, or a number of other 
factors—we may pick the order we like best, but we should stick with it. 
In contrast, however, we organize member functions in alphabetical order 
with the constructor and destructor first. The UIW_BUTTON class 
shows how. 

class ZIL_EXPORT_CLASS UIW_BUTTON : public UI_WINDOWJDBJECT { 

public: 
BTF_FLAGS btFlags; 
EVENT_TYPE value; 
UIW_BUTTON(int left, int top, int width, ZIL_ICHAR *text, 

BTF_FLAGS btFlags = BTF_NO_TOGGLE | BTF_AUTO_SIZE, 
WOF_FLAGS woFlags = WOF_JUSTIFY_CENTER, 
USER_FUNCTION userFunction = NULL, EVENT_TYPE value = 0, 
ZIL_ICHAR *bitmapName = NULL); 

virtual ~UIW_BUTTON(void); 
virtual EVENT_TYPE Event(const UI_EVENT &event); 

Getting Started with OpenZinc Programming 85 



OpenZinc and C++ 

ZIL_ICHAR *DataGet(int stripText = FALSE); 

void DataSet(ZIL_ICHAR *text); 
virtual void information (INF0_REQUEST request, void *data, 

OBJECTID objectID = 0); 

static EVENT_TYPE Message(UI_WINDOW_OBJECT *object, UI_EVENT &event, 
EVENT_TYPE ccode); 

In addition to the class definition rules described above, OpenZinc Software 
employees adhere to a full set of internal coding standards, designed to 
improve the readability and maintenance of code. For a full explanation of 
these rules see "Appendix C—OpenZinc Coding Standards." 

Derived classes Deriving classes, otherwise known as inheritance, is a benefit of C++ that 
allows us to build applications with more functionality, less code, and fewer 
bugs. By deriving a class and then adding or changing the behavior we want, 
we leave other code untouched. If we wanted to do something conceptually 
similar in C, we would have to copy all the code in a procedure that we 
would otherwise subclass in C++, and modify much or all of it in order to 
add or change the behavior we want. Copying and modifying, in contrast to 
deriving, introduces bugs not present before, increases complexity, and 
results in larger code and executable size. 

86 Getting Started with OpenZinc Programming 



One example of inheritance in OpenZinc is the UID_KEYBOARD class, whose 
hierarchy is shown below: 

Deriving UID_KEYBOARD from UI_DEYICE and UI_ELEMENT base 
classes has two benefits. First, because UID_KEYBOARD derives from 
UI_ELEMENT, classes that derive from UI_LIST can group and manipu-
late it; this means the Event Manager can manage a UID_KEYBOARD 
object. Second, because UID_KEYBOARD also derives from 
UI_DEVICE, the Event Manager can call UID_KEYBOARD 's virtual 
Poll() function, thereby allowing the keyboard device to place events into 
the event queue. 

Another example of class inheritance are the UIW_MINIMIZE_BUTTON 
and UIW_MAXIMIZE_BUTTON classes, both three-dimensional buttons 
which function when the user clicks on them with the mouse. Fundamen-
tally, they're the same, but we change them by giving them different appear-
ances and by making them do different things. 

Getting Started with OpenZinc Programming 87 



OpenZinc and C++ 

Multiple inheritance allows classes to inherit behavior from classes with dif-
ferent 

member functions and variables. This helps us avoid duplicating work 
when our 

own classes must inherit behavior common to more than one class. 
However, 

multiple inheritance has its critics. 
Some programmers using object-oriented languages such as Objective-C 
and Smalltalk-80 believe that multiple inheritance leads to more complicated 
classes. Indeed, classes with multiple parents have code that's harder to read. 
However, OpenZinc could not have implemented some features as elegantly and 
in such a small amount of code without multiple inheritance. Despite adding 
more complexity to a class, multiple inheritance allows us to extend the fea-
tures of objects with less work, minimal code duplication, and more intu-
itively than if C++ did not use multiple inheritance. 
UIW_WINDOW is an example of the benefits of multiple inheritance, 
because it derives from both UI_WINDOW_OBJECT and UI_LIST, using 
behaviors common to both. Because UIW_WINDOW derives from 
UI_WINDOW_OBJECT, which in turn derives from UI_ELEMENT, it 
can act as an element of a list. Also, because UIW_WINDOW derives from 
the UIJLIST base class, UIW_WINDOW can also behave as a list that 
manages elements such as buttons, strings, and tool bars. Because of multi-
ple inheritance, UIW_WINDOW and other classes can inherit behavior 
from disparate classes—without it, we would find implementing UIW-
_WINDOW much more difficult. 

Abstract classes Abstract classes define a function but don't implement it—they leave the 
implementation to another class, allowing functionality to be decided at run 
time. For example, OpenZinc's display function defines a display, but leaves how 
that display function will work to a derived class that detects what display 
the computer is using, and configures itself appropriately. 

OpenZinc uses abstract classes in its methods of abstracting devices and displays 
of native operating environments. For example, OpenZinc's UI_DISPLAY class 
defines some basic behaviors, such as drawing lines and polygons—but it 
leaves the implementation of these behaviors to classes that derive from 
UI_DISPLAY. This way, a derived display class can inherit basic behaviors 
from UI_DISPLAY, and implement them for a specific operating environ-
ment's display. This is what OpenZinc calls a "less-thin" layer of abstraction over 
the native operating environment's API, in contrast to a thin or thick layer. 

Multiple 
inheritance 

88 Getting Started with OpenZinc Programming 



Because a thin layer is tightly bound to an operating environment, it provides 
higher performance, but at the cost of less programming flexibility and port-
ability. In contrast, a thick layer of abstraction provides greater programming 
flexibility and portability, but at the cost of lower performance. OpenZinc treads a 
middle ground between thin and thick layers that benefits us two ways. 

The first benefit of OpenZinc is that our OpenZinc programs run nearly as fast as pro-
grams that wrap a thin layer over the operating environment. Second, we 
will find that writing the program will be nearly as flexible and portable as 
writing a program using a thick layer of abstraction of the operating environ-
ment. 

For a class to be considered abstract, it must have one or more pure virtual 
functions. For example, UI_DEVICE has two pure functions, Event() and 
PoII(). Neither actually do anything in UI_DEVICE; rather, their function-
ality is implemented by the devices that inherit from UI_DEVICE. Here's 
an example of UI_DEVICE 's virtual functions: 

class ZIL_EXPORT_CLASS UIDEVICE : public UI_ELEMENT 
{ 

friend class ZIL_EXPORT_CLASS UI_EVENT_MANAGER; 
public: 

virtual EVENT_TYPE Event(const UI_EVENT &event) = 0; 
protected: 

virtual void Poll(void) = 0; 
}; 

Abstract classes help us because we can define how a class behaves without 
associating any specific code with the class. However, some classes appear 
abstract, even though they are not; for example, the 
UI_WINDOW_OBJECT appears like an abstract class, but it is not an 
abstract class because it has no pure virtual functions. We'll discuss virtual 
functions in more detail in this chapter, including how virtual functions free 
us from tying events to windows and window objects. 

Friend classes Friend classes allow a specified class to gain access to the protected and pri-
vate members of another class; we can hide the implementation of one class 
but let a similar or corresponding class have special access rights. Often, a 
OpenZinc class grants friend rights to other classes, most often, in OpenZinc Designer. 
Other times, a class derived from the UI_ELEMENT base class grants 
friend access to its parent list, allowing it to optimize access to its list ele-
ments. 

Getting Started with OpenZinc Programming 89 



OpenZinc and C++ 

Object creation 

Explicit Once we've defined a class, the next logical step is to put it to work by 
instantiation instantiating it, which means creating an object from the definition of a class 

by allocating memory for it. When we instantiate objects, we either use the 
new operator, or we create a static instance that is deleted automatically 
when the program moves out of scope. Using the new operator is called 
explicit instantiation, because by doing so, we state explicitly that we want 
to instantiate a new object. Explicit instantiation is dynamic; the memory for 
the new object is allocated from the freestore of available memory. The new 
operator initializes a class and maintains its information until it sees a delete 
operator, which frees the memory; if we didn't use the new operator, the 
object would be destroyed when the scope of the function ended. 

Here is some sample code that initializes the display, the Event Manager, and 
the Window Manager using the new operator: 

#include <ui_win.hpp> 
main() 
{ 

// Initialize the screen. 
UI_DISPLAY *display = new UI_TEXT_DISPLAY; 

// Initialize the event manager. 
UI__EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display); 

// Initialize the window manager. 
UI_WINDOW_MANAGER *windowManager = new UI_WINEX)W_MANGER(display, 

eventManager); 

} 

Implicit In contrast to using new to explicitly instantiate an object, we can write a 
instantiation function to implicitly instantiate an object, which means the program instan-
and scope tiates the object when it reaches the scope of its class. The biggest difference 

between implicit and explicit instantiation is that implicit instantiation is 
static; the compiler is responsible for allocating memory for the object. 

In this example, the window created will be automatically deleted when the 
scope of the function ends. 

#include <ui_win.hpp> 
ExampleFunction() 
{ 

90 Getting Started with OpenZinc Programming 



// Create a window. 
UIW_WINDOW window(0, 0, 25, 5); 

} 

Base Class A constructor initializes a new instance of an object, assigning to the object 
construction the appropriate startup information. But C++ classes also call the construc-

tors of their base classes to assign startup information to them as well. For 
example, the UI_TEXT_DISPLAY, which inherits from UI_DISPLAY and 
UI_REGION_LIST, calls the UI_DISPLAY constructor and the UI_-
REGION_LIST constructor before it initializes any information: 

UI_TEXT_DISPLAY::UI_TEXT_DISPLAY(TDM_M0DE mode) : 
UI_DISPLAY(TRUE), UI_REGION_LIST() 

{ 

} 

C++ initializes a base class with no arguments automatically, whether or not 
the derived constructor calls the base class. But OpenZinc calls base classes 
explicitly in order to make code more readable. The UI_REGION_LIST 
code above is one example of this—notice that we called 
UI_REGION_LIST from the constructor of UI_TEXT_DISPLAY. In 
another example, here the UID_KEYBOARD constructor calls UI 
_DEVICE to initialize its base class information: 

UID_KEYBOARD::UID_KEYBOARD(DS_STATE initialState) : 
UI_DEVICE(E_KEY, initialState) 

{ 

} 

Sometimes, this base class initialization goes several levels up the inherit-
ance hierarchy. In the following example, UIW_POP_UP_ITEM class calls 
the UIW_BUTTON class for initialization, which in turn calls 
UI_WINDOW_OBJECT for base class initialization. This saves a lot of 
code we'd otherwise need to write to initialize each object separately: 

UIW_BUTTON::UIW_BUTTON(int left, int top, int width, 
ZIL_ICHAR *_text, BTF_FLAGS _btFlags, WOF_FLAGS _woFlags, 
USER_FUNCTION _userFunction, EVENT_TYPE _value, 
ZIL_ICHAR *_bitmapName) : 
UI_WINDOW_OBJECT(left, top, width, 1, _woFlags, 

WOAF_NO_FLAGS), 
text(ZIL_NULLP(ZIL_ICHAR)), btFlags(_btFlags), 
value(_value), depth(2), 
btStatus(BTS_N0_STATUS), bitmapWidth(0), bitmapHeight(0), 

Getting Started with OpenZinc Programming 91 



OpenZinc and C++ 

92 Getting Started with OpenZinc Programming 

bitmapArray(ZIL_NULLP(UINT8)) 
{ 
} 

UIW_P0P_UP_ITEM::UIW_POP_UP_ITEM(void) : 
UIW_BUTT0N(0, 0, 1, ZIL_NULLP(ZIL_ICHAR), BTF_NO_3D, 
W0F_N0_FLAGS), 
menu(0, 0, WNF_NO_FLAGS, WOF_BORDER, 

W0AF_TEMP0RARY | W0AF_N0_DESTR0Y), 
mniFlags{MNIF_SEPARATOR) 

{ 
} 

Array An array constructor initializes an array, and an example of a class that uses 
constructors an array constructor is UI_QUEUE_BLOCK. Array constructors help the 

Event Manager run more efficiently by allowing it to allocate memory for 
the queue all at once, rather than allocating it as events come into the queue, 
and then deallocating the blocks after it has been used. The code below 
shows how the queue block initializes event information: 

UI_QUEUE BLOCK::UI_QUEUE_BLOCK(int _noOfElements) : 
UI_LIST_BLOCK(_noOfElements) 

{ 
// Initialize the queue block. 

UI_QUEUE_ELEMENT *queueBlock = new 
UI_QUEUE_ELEMENT[_noOfElements]; 

elementArray = queueBlock; 

for (int i = 0; i < _noOfElements; i++) 

freeList.Add(NULL, SqueueBlock[i]); 
} 

Overloaded Overloaded constructors are constructors that let us specify different param-
constructors eters, depending on how we would like to initialize the information in a new 

instance of an object. For example, the ZIL_DATE class overloads its con-
structor in the following manner: 

class ZIL_EXPORT_CLASS ZIL_DATE 
{ 
ZIL_DATE (void); 
ZIL_DATE( const Z IL_DATE &date); 

ZIL_DATE(int year, int month, int day); 

ZIL_DATE(const ZIL_ICHAR *string, 
DTF_FLAGS dtFlags = DTF_NO_FLAGS); 



Overloaded date constructors in the ZIL_DATE class allow us to create a 
date object according to: 

• the computer's system date, which requires no arguments; 

• a previously created date object; 

• three integer values, the year, month, and day; and 

• a country-independent, alphanumeric date. 

Most classes derived from UI_WINDOW_OBJECT have at least two over-
loaded constructors: one, or more, for basic run-time setup, and another for 
persistent object access. For example, the UIW_POP_UP_ITEM class has 
the following definitions: 

class ZIL_EXPORT_CLASS UIW_POP_UP_ITEM : public UIW_BUTTON { 

UIW_POP UPITEM(void); 
UIW_POP_UP_ITEM(ZIL_ICHAR text, 

MNIF_FLAGS mniFlags = MNIF_NO_FIAGS, 
BTF_FLAGS btFlags = BTF_N0_3D, WOF_FLAGS woFlags = WOF_NO_FLAGS, 
ZIL_USER_FUNCTION userFunction = 
ZIL_NULLF(ZIL_USER_FUNCTION), unsigned value = 0); 

// Persistent object constructor. 
UIW_POP_UP_ITEM(const ZILICHAR *name, 

ZIL_ST0RAGE_READ_0NLY *file, 
ZIL_ST0RAGE_0BJECT_READ_0NLY *object); 

The first constructor provides menu item separators, the second creates the 
pop up item according to the information in the constructor, and the last con-
struct the pop-up item from disk information. 

Copy 
constructors 

A copy constructor lets us pass a previously created class into the construc-
tor of another object. We use copy constructors when we want to instantiate 
a new object with the data contained in another object. Several library 
classes use copy constructors: ZIL_BIGNUM, ZIL_DATE, ZIL_TIME, 
and ZIL_UTIME. An example of the date constructor is shown below: 

class ZIL_EXP0RT CLASS ZIL_DATE 
{ 

ZIL_DATE(void) { DataSet(); } 
ZIL_DATE(const ZIL_DATE &date); 
ZIL_DATE(int year, int month, int day); 
ZIL_DATE(const ZIL_ICHAR *string, 

DTF_FLAGS dtFlags = DTF NO FLAGS); 

Getting Started with OpenZinc Programming 93 



OpenZinc and C++ 

Default Often, constructors give us the choice whether or not to use a default argu-
arguments ment, which sets up some default behavior for an object when we instantiate 

it. When we call a constructor, we can leave out any arguments and use the 
constructor's default, which OpenZinc specifies. The text display class uses a 
default argument, TDM_AUTO, which sets the display to the highest possi-
ble text resolution. 

class ZIL_EXP0RT CLASS UI_TEXT_DISPLAY : public UI_DISPLAY, 
public UI_REGI0N__LIST 

{ 
public: 

UI_TEXT_DISPLAY(TDM_MODE mode = TDM_AUTO); 

If we want to use the text display's default, we can call the constructor with 
no arguments: 

UI_DISPLAY *display = new UI_TEXT_DISPLAY; 

Otherwise, we can override the default by providing an argument. In this 
case, our argument tells the constructor to create an 80 x 43 text display. 

// Force 43 line mode. 
UI_DISPLAY *display = new UI_TEXT_DISPLAY(TDM_43x80); 

Many other member functions contain default information. The Program-
mer's Reference contains information about the types of default arguments, 
their use, and overriding their definition. 

Object deletion 

Explicit deletion Once we're done with an object, the next logical step is to delete it. When we 
delete an object, we either use the delete operator, or allow the system to 
delete the object when the scope of the function that instantiated the object 
ends. The order of class creation and destruction is important. Generally, the 
objects we create first we destroy last. 

If we created an object using the reserved word new, we must delete it. For 
example, when we create a display, Event Manager, and Window Manager 
with new, we must use delete to free them. 

94 Getting Started with OpenZinc Programming 



#include ui_win.hpp> 
main() 

{ 
// Initialize OpenZinc using the new operator. 

UI_DISPLAY *display = new UI_TEXT_DISPLAY; 
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display); 

UI_WINDOW_MANAGER *windowManager = 
new UI_WINDOW_MANGER(display, eventManager); 

// Restore the system, 

delete indowManager; 
delete eventManager; 
delete display; 

Implicit deletion 
and scope 

The example above showed how we could use the reserved word delete to 
delete new objects. However, when a function creates a static instance of an 
object, when the function's scope ends, the object will be deleted automati-
cally. In the example below, the class destructor is called automatically when 
the scope of ExampleFunction() ends. 

ExampleFunction() 
{ 

UIW_WIND0W window(0, 0, 25, 5); 

// The window is automatically destroyed when the scope of 
// ExampleFunction ends. 

} 

The order of class creation and destruction is important. In general, those 
objects that you create first, must be destroyed last. 

Virtual 
destructors 

Virtual destructors allow OpenZinc to call the destructor of the base class, rather 
than the destructor of the derived object. This saves us from writing func-
tions that delete instances of classes that derive from our base class. For 
example, the keyboard, cursor, and mouse derive from UI_DEVICE, which 
is derived from UI_ELEMENT. If we delete the Event Manager, when its 
list is destroyed, all objects attached to the list will be destroyed, even 
though the list cannot possibly know what types of objects it is deleting. 

class ZIL_EXPORT_CLASS UI_LIST { 

public: 
virtual ~UI_LIST(void) { Destroy(); } 

Getting Started with OpenZinc Programming 95 



OpenZinc and C++ 

void UI_LIST::Destroy(void) 
{ 
UI_ELEMENT *tElement; 
// Delete all the elements in the list. 
for (UI_ELEMENT *element = first; element; ) 
{ 
tElement = element; 
element = element->next; 
delete tElement; 

} 

} 

Base class 
destruction 

When we call the destructor of a derived class, C++ calls the destructor of 
the base class. This saves us from calling the destructor by hand, saving us 
code. The UIW_BUTTON class's destructor is a good example of how a 
derived class constructor calls its base class's destructor. 

UIW_BUTT0N::~UIW_BUTT0N(void) 
{ 
if (string) 

delete string; 
} 

After the button class destructor is executed, C++ automatically calls the 
destructor of UI_WINDOW_OBJECT, then the destructor for 
UI_ELEMENT. Thus, destruction of class objects works in an order oppo-
site of class construction. This way, member variables in base classes that a 
derived class may rely on will still exist until after the derived object has 
been completely destroyed. 

Array 
destruction 

UI_QUEUE_BLOCK uses an array destructor to delete its queue elements. 
Array destructors should be used only in conjunction with array construc-
tors. Further, some compilers require that we specify the number of elements 
in the array when deleting it, whereas others do not. The code for array 
destruction is shown below. 

UI_QUEUE_BL0CK::~UI_QUEUE_BL0CK(void) 
{ 

// Free the queue block. 
UI_QUEUE_ELEMENT *queueBlock = (UI_QUEUE_ELEMENT *)elementArray; 
delete queueBlock; 

} 

96 Getting Started with OpenZinc Programming 



Member variables 

Variable As we discussed earlier in the chapter, OpenZinc member variables begin with a 
definit ions lowercase character and are organized according to a logical order, such as 

byte boundary alignment, first use, most common usage, or whatever makes 
sense. An example of how OpenZinc defines member variables is the UI_LIST 
class, with several of its member variables shown below: 

class ZIL_EXPORT_CLASS UI_LIST { 

protected: 
UI_ELEMENT *first, *last, *current; 
ZIL_COMPARE_FUNCTION compareFunction; 

OpenZinc objects define and use member variables as bitwise flags. 
UI_WINDOW_OBJECT::woF/ags is a good example of this: 

// woFlags 
typedef unsigned WOF_FLAGS; 
const W0F_FLAGS W0F_N0_FLAGS= 0x0000; 
const W0F_FLAGS WOF_JUSTIFY_CENTER= 0x0001; 
const WOF_FLAGS WOF_JUSTIFY_RIGHT= 0x0002; 
const WOF_FLAGS WOF_BORDER= 0x0004; 
const WOF_FLAGS WOF_VIEW_ONLY= 0x0010; 
const WOF_FLAGS WOF_UNANSWERED= 0x0080; 
const WOF_FLAGS WOF_INVALID= 0x0100; 
const W0F_FLAGS WOF_NON_FIELD_REGION= 0x0200; 
const WOF_FLAGS WOF_NON_SELECTABLE= 0x0400; 
const WOF_FLAGS WOF_AUTO_CLEAR= 0x0800; 
class ZIL_EXPORT_CLASS UI_WINDOW_OBJECT : public UI_ELEMENT 
{ 
public: 

WOF_FLAGS woFlags; 

The base class UI_WINDOW_OBJECT logically ORs together the bits of 
woFlags to form composite values to determine its mode of operation. See 
the Programmer's Reference for what each flag sets. 

Static member Occasionally, classes define static member variables, which provide the 
variables same information to any instance of the class or of a derived class. For exam-

ple, the UI_WINDOW_OBJECT class has a static member variable called 
windowManager, which is a pointer to the Window Manager. All objects that 
derive from UI_WINDOW_OBJECT will therefore point to the same Win-

Getting Started with OpenZinc Programming 97 



OpenZinc and C++ 

dow Manager without any added work on our part. 
UI_WINDOW_OBJECT. such as eventManager and 
window objects to use the same error and help systems. 

static UI_DISPLAY *display; 

static UI_EVENT_MANAGER *eventManager; 
static UI_WINDOW_MANAGER *windowManager; 

In addition to providing the same information to all objects of a class or that 
derive from a class, static variables store internal information. For example, 
in top-down operating systems such as DOS, Macintosh, and Curses, and 
under certain conditions in bottom-up operating systems, the 
UI_WINDOW_OBJECT class uses a static variable called repeatRate to 
store the rate at which an object will repeat a character when the user holds 
down a key, as well as another called doubleClickRate, which determines 
how fast a window will respond to the double-click of a mouse. 

static int repeatRate; 
static int doubleClickRate; 

Remember that when we use static pointers as part of a class, C++ requires 
that we declare space for them outside of the class definition. 

Other pointers in 
display, allow all 

Member functions 

Function 
definitions 

OpenZinc functions begin with an uppercase letter and usually form complete 
words that describe the function. For example, the UI_ELEMENT class has 
the member functions Listlndex(), Next() and Previous(): 

class ZIL_EXP0RT_CLASS UI_ELEMENT { 

public: 
int Listlndex(void); 
UI_ELEMENT *Next(void); 
UI_ELEMENT *Previous(void); 

Default 
arguments 

Earlier we learned that constructors often give us the choice whether or not 
to use a default argument, which sets up some default behavior for an object 
when we instantiate it. Just as constructors can use default arguments, so can 

98 Getting Started with OpenZinc Programming 



member functions, which use default arguments to behave consistently. For 
example, UI_DISPLAY uses many default arguments for filling zones and 
XORing the screen output. Notice the default arguments in UI_DISPLAY's 
Bitmap(), Ellipse( ),and MapColor() functions. 

class ZIL_EXP0RT_CLASS UI_DISPLAY : public ZIL_INTERNATIONAL { 

public: 

virtual ~UI_DISPLAY(void) ; 
virtual void Ellipse(ZIL_SCREENID screenID, int column, int line, 

int startAngle, int endAngle, int xRadius, int yRadius, 
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE, 

virtual void Line(ZIL_SCREENID screenID, int columnl, 
int linel, int column2, int line2, 
const UI_PALETTE *palette, int width = 1, int _xor = FALSE, 
const UI_REGI0N *clipRegion = ZIL_NULLP(UI_REGION)); 

virtual void Polygon(ZIL_SCREENID screenID, int numPoints, 
const int *polygonPoints, const UI_PALETTE *palette, 
int fill = FALSE, int _xor = FALSE; 

}; 

Virtual member In C++, virtual member functions ensure that when we call an object's mem-
functions ber function, we don't call the member function of the base class with the 

same name. OpenZinc takes advantage of virtual functions by defining them in a 
base class, and overloading them in derived classes to give those classes 
basic behavior. In one example, the UI_DEVICE class defines virtual 
Event() and Poll() routines. 

class ZIL_EXPORT_CLASS UI_DEVICE : public UI_ELEMENT { 

public: 
virtual EVENT_TYPE Event(const UI_EVENT &event) = 0; 

protected: 
virtual void Poll(void) = 0; 

When the Event Manager calls its devices' Poll() functions, instead of call-
ing these functions, the Event Manager calls the virtual Poll() functions of 
the keyboard, mouse, and cursor. 

Getting Started with OpenZinc Programming 99 



OpenZinc and C++ 

100 Getting Started with OpenZinc Programming 

Virtual functions Earlier, we discussed how each window and window object interprets events 

and message according to how the object operates, eliminating the need for use to write 
handling code to tie events to window objects. Virtual functions help this happen. If 

we wrote a program with a Window Manager and an attached window, when 
the user clicked the mouse button, the Window Manager would send a mes-
sage to the window, where it calls the UIW_WINDOW::Event() function 
to override the actions that the UI_WINDOW_OBJECT base class would 
normally perform. But if the window doesn't know how to handle the mes-
sage, the window would pas the event up its inheritance hierarchy by calling 
the UI_WINDOW_OBJECT::Event( ) base class function, which may 
know how to handle the message. One benefit to how OpenZinc uses virtual func-
tions is that we can send messages to an object without having to know how 
the object works; we let OpenZinc handle those details for us. A second benefit, 
the one we've already discussed, is that we don't need to tie events to win-
dow objects; we can tell a window object which events to watch for, and let 
the window object work naturally. 

Overloaded Overloaded member functions allow us to specify different parameters and 
member values that a function accepts by default. For example, the ZIL_DATE class 
functions overloads two member functions, Export() and Import(): 

The overloaded Export() functions allow us to get 

• a date based on three integers, year, month, and day 

• a date based on an alphanumeric value 

• a date in a packed integer format 

The overloaded Import() functions allow us to set 

• a system date, which requires no arguments; 

• a date based on a date class object previously constructed; 

• a date based on the year, month, and day; and 



Overloaded Used properly, operator overloading is a major benefit of C++ for writing 
operators more elegant and readable code. 

OpenZinc uses operator overloading two different ways. The most common way is 
to add an element to an existing list, as do the base classes UI_LIST, 
UI_EVENT_MANAGER, UI_WINDOW_MANAGER, UIW_WINDOW, 
and all objects that derive from the UIW_WINDOW class. The + operator 
allows us to add a border, a maximize button, a minimize button, a system but-
ton, and a title to a parent control class, such as a window. For example, we 
could use the following code to create a window and then attach to it sublevel 
window objects: 

// Create a simple window and attach sublevel window objects. 
UIW_WINDOW *window = new UIW_WINDOW(5, 5, 40, 6); 
*window 

+ new UIW_BORDER 
+ new UIW_MAXIMIZE_BUTTON 
+ new UIW_MINIMIZE_BUTTON 
+ new UIW_SYSTEM__BUTTON (SYF_GENERIC) 
+ new UIW_TITLE("Simple Window"); 

The second way OpenZinc uses overloaded operators is with the ZIL_DATE and 
ZIL_TIME classes, which define operations for =, +, -, >, >=, <, <=, ++, —, 
+=, -=, = and !=. In ZIL_DATE and ZIL_TIME, these operators incre-
ment the values of date or time objects or compare the chronological value 
of two date or time objects. Below is an example of how ZIL_DATE does 
this. 

// ZIL_DATE 
class ZIL_EXPORT_CLASS ZIL_DATE : public ZIL_UTIME 
{ 
public: 

long operator=(long days) { jday = days; return (jday); } 

long operator=(const ZIL_DATE &date) 
{ jday = date.jday; usee = date.usee; return (jday); } 

long operator+(long days) { return (jday + days); } 
long operator+(const ZIL_DATE &date) 

{ return (jday + date.jday); } 

long operator-(long days) { return (jday - days); } 
long operator-(const ZIL DATE &date) 

{ return (jday - date.jday); } 

long operator++(void) { jday++; return (jday); } 

long operator—(void) { jday—; return (jday); } 

void operator+=(long days) { jday += days; } 

void operator—(long days) { jday -= days; } 

int operator==(const ZIL_DATE& date) 
{ return (ZIL_UTIME::operator==(date)); } 

Getting Started with OpenZinc Programming 101 



OpenZinc and C++ 

int operator!=(const ZIL_DATE& date) 
{ return (ZIL_UTIME::operator!=(date)); } 

int operator>(const ZIL_DATE &date) 
{ return (ZIL_UTIME::operator>(date)); } 

int operator>=(const ZILJDATE &date) 
{ return (ZIL_UTIME::operator>=(date)); } 

int operator<(const ZIL_DATE &date) 
{ return (ZIL_UTIME::operator<(date)); > 

int operator<=(const ZIL_DATE &date) 
{ return (ZIL_UTIME::operator<=(date)); } 

void SetBasis(int _basisYear) { basisYear = _basisYear; } 
int GetBasis() { return basisYear; } 

}; 

The example below shows how we can use the overloaded date operators to 
compare a date to special times throughout the year. 

ZIL_DATE currentDate;// Initialize the system date. 
ZIL_DATE newYears1990("Jan. 1, 1990"); 

ZIL_DATE twentyFirstCentury("Jan. 1, 2001"); 

// Check the dates 
if (currentDate = newYearsl990) 

printf("Happy new year!\n"); 

else if (currentDate < twentyFirstCentury) 
printf("It's not the twenty-first century.\n"); 

else 
printf("It's the twenty-first century.\n"); 

Static member Analogous to a static member variable, a static member function provides to 
functions all instances of a class or of a derived class a common function. Here's why 

OpenZinc uses static member functions. 
Static member functions allow us to check pro grammatically class informa-
tion before calling the class's constructor. A good example of this is the 
ZIL_STORAGE_READ_ONLY class, where we can check the validity of 
a file or directory path without first creating a storage unit. We can do this by 
calling the ZIL_STORAGE_READ_ONLY::ValidName() member func-
tion. 

class ZIL_EXPORT_CLASS ZIL_STORAGE_READ_ONLY : 
public UI_LIST 

{ 
public: 

static int ValidName(const ZIL_ICHAR *name, 
int createStorage = FALSE); 

1 0 2 Getting Started with OpenZinc Programming 



Static member functions perform generic operations. Two static members fit 
into this category: UIW_WINDOW::Generic() and UIW_-
SYSTEM_BUTTON::Generic(). We can use these member functions, not 
only to construct the object, but also to place generic subobjects in their lists. 
For example, the definition for UIW_WINDOW::Generic() lets us make 
one call that initializes a window and adds the border, maximize button, min-
imize button, system button, and title: 

UIW_WINDOW *UIW_WINDCW::Generic(int left, int top, int width, 
int height, ZIL_ICHAR *title, UI_WIND0W_0BJECT *minObject, 
W0F_FLAGS woFlags, W0AF_FLAGS woAdvancedFlags, 
UI_HELP_C0NTEXT helpContext) 

{ 
// Create the window and add default window objects. 
UIW_WIND0W *windcw = new UIW_WINDOW(left, top, width, height,woFlags, woAdvancedFlags, helpContext, minObject); 
(void)&(*window 

+ new UIW_B0RDER 

+ new UIW_MAXIMIZE_BUTTON 

+ new UIW_MINIMIZE_BUTTON 

+ new UIW_SYSTEM_BUTTON(SYF_GENERIC) 

+ new UIWJETTLE(title)); 

// Return a pointer to the new window, 

return (window); 
} 

Static member functions send system messages to the Event Manager. For 
example, when the end user presses <Enter> or clicks the mouse button on a 
UIW_BUTTON object whose BTF_SEND_MESSAGE flag is set, the but-
ton sends a message, whose type is UIW_BUTTON:.value, to the Event 
Manager. It does this by calling a static member function called Message(), 
which simply places the event on the queue. 
All window objects use static member functions when our programs call the 
persistent object constructor. Each window object loaded from a OpenZinc 
Designer file has a static member function called New( ), which links all 
code related to the class into the executable when the program calls an 
object's constructor. Below is an example of an object's New(): 

static UI_WIND0W_0BJECT *New(const ZIL_ICHAR *name, 
ZIL_ST0RAGE_READ_0NLY * file, 
ZIL_ST0RAGE_0BJECT_READ_0NLY *object) 

{ return (new UIW_BUTTON(name, file, object)); } 
Often, when using static member functions, we'll find certain reasons for 
using pointers to those functions. One important use for pointers to static 
member functions is the addition of user functions to objects. For example, Getting Started with OpenZinc Programming 103 



OpenZinc and C++ 

when we create a button, we may want that button to call some function that 
we wrote instead of one that OpenZinc wrote. If the user function is a member 
function, it must be declared static because otherwise C++ doesn't allow its 
address to be passed. 

Conclusion 
In this chapter, we've discussed how OpenZinc uses C++ features in defining 
classes, instantiating and destroying objects, and working with member vari-
ables and overloaded functions, in addition to how scope affects writing pro-
grams in OpenZinc. 

In the next chapter, we'll discuss the concepts of globalizing an application. 

104 Getting Started with OpenZinc Programming 



Globalization 

In this chapter we'll discuss the concepts of globalizing an application. 
The basic OpenZinc package is already fully globalized. You can build globalized 
applications that use either 8-bit character strings or 16-bit Unicode charac-
ter strings. 

Globalizing an application takes two steps: enabling and localizing. 
Enabling a program means to create the program in such a way that it can be 
easily ported to any locale. Typically, an application is not enabled, unless 
the program can be localized without recompiling the source code. Therefore 
an enabled program must detect its locale and resolve any hardware depen-
dencies at run time. One example of how difficult this can be is writing a 
program enabled for the Japanese marketplace. Since most Japanese PCs are 
non-ISA compliant, a program enabled for the Japanese marketplace must 

Getting Started with OpenZinc Programming 1 0 5 

Chapter 8 



Globalization 

use different low-level functions. Therefore our application must know how 
to detect that it's running on Japanese PC hardware and configure itself 
accordingly. 

Localizing an application means to adapt the application to run properly for 
a particular locale. This means that the program displays and formats date, 
time, currency, and number fields consistently with how someone native to 
that locale would expect to see them. Additionally, the program should trans-
late any of its text appropriately. 

OpenZinc is already enabled and has been localized for many different languages 
and locales. For an up-to-date list of the supported languages and locales, see 
the READ.ME file. 

As mentioned above, globalizing an application is done in two steps: first 
enabling the application and then localizing it. Enabling the application is 
the foundation upon which globalization is built, and so we must enable our 
programs by design, not after-the-fact. Here are some issues to consider 
when designing your applications.. 

Enabling OpenZinc objects 
OpenZinc's architects have enabled all objects in the OpenZinc library specifically to 

ease globalizing our programs. We need not do anything to OpenZinc objects to 
use them in our globalized applications. 

Enabling objects Any object we use that presents information will likely need to be localized 
later. This means we must provide a mechanism to allow the program to set 
its data dynamically. We can follow three approaches. 

1. Hardcode the data and change it for each locale. This is not a recom-
mended approach, since we may miss translating something, and since 
we would have to provide a separate executable for each locale or lan-
guage. 

2. Place the data in a separate module, in a table perhaps, that we can com-
pile and link into our application. This is not a good approach, since the 
executable can only support a single language or locale; 

106 Getting Started with OpenZinc Programming 



3. Place the data in a data file that can be accessed at run time. OpenZinc uses a 
combination of methods two and three. Later in this chapter, we will dis-
cuss how OpenZinc uses these methods. 

Character types OpenZinc uses one of two character sets: ISO 8859-1 or Unicode. The ISO 8859-
1 characters are eight bits wide, while the Unicode characters are 16 bits. We 
choose our program's characters by examining its requirements. By default, 
OpenZinc programs use ISO 8859-1 characters, but if we want to build a Unicode 
application we define ZIL_UNICODE in UI_ENV.HPP, and our applica-
tion will use Unicode characters. Also, whenever OpenZinc needs to output text to 
the screen or get text from the user, it maps the characters to or from the 
hardware character set. OpenZinc provides mappings for many common hardware 
character sets. 

Because OpenZinc can support either 8- or 16-bit characters, our programs must 
be written for either type. We do this by using ZIL_ICHAR types, a specific 
OpenZinc data type, instead of the char type wherever we use characters. A 
ZIL_ICHAR variable resolves to an 8-bit char when the program doesn't 
use Unicode, or to a 16-bit unsigned short if it does. The ZIL_UNICODE 
macro defines its type definition. If UI_ENV.HPP doesn't define 
ZIL_UNICODE when compiling the library, ZIL_ICHAR will be 8 bits 
wide, whereas if it does, ZIL_ICHAR will be 16 bits wide. 

Remember that the ZIL_UNICODE definition must be consistent between 
the library and our source code. 

Some compilers provide a wchar_t type, which should resolve to a 16-bit or 
wider character type. Unfortunately, not all compilers support wchar_t or 
define it to be a 16-bit or wider value. So even if our compiler supports 
wchar_t, OpenZinc recommends using ZIL_ICHAR in case we must port our 
application to another environment without a compiler that correctly sup-
ports the wchar_t type. In either case, ZIL_ICHAR provides more flexible 
portability, as it resolves to either an 8-bit character or a 16-bit character as 
appropriate for the application, whereas wchar_t stays the same. 

Using wide This section applies to Unicode programs only. If we don't currently support 
character strings Unicode, OpenZinc recommends nonetheless the use of the techniques presented 

here, or at least encourages familiarity with them, in case our application uti-
lizes the Unicode character set in the future. 

If our compiler supports wide character strings correctly, meaning wchar_t 
is a 16-bit value or wider as discussed above, we can define literal strings 
with the 'L' type specifier, such as wchar_t *wideString = L"wide string." 

Getting Started with OpenZinc Programming 107 



Globalization 

But if our compiler does not support wide character strings—and many com-
pilers don't—we must use an alternate method of creating string literals, 
because a string in double-quotes resolves to 8-bit characters. Though the 
practice looks unconventional, we must create strings as arrays of 
ZIL_ICHAR characters, initialized by specifying each character individu-
ally. For instance, the text "wide string" would look like this: 

ZIL_ICHAR w i d e S t r i n g [ ] = { ' w ' , 1 ± ' , ' d ' , ' e ' , 
' ' , ' s ' , ' t ' , ' r ' , ' i ' , ' n ' , ' g ' , 0}; 

Note the terminating 0 at the end of the string. The variable wideString from 
this example is a 16-bit string we can use like a normal 8-bit string, except 
that we must use the ZIL_INTERNATIONAL string functions for string 
manipulation. 

Localizing our application 
Once we've enabled our application, localizing it is a matter of mere lan-
guage translation. 

Localizing OpenZinc Many OpenZinc objects must be localized, which includes setting the correct date, 
Objects time, or number formatting; using translated text for things like system menu 

options; providing default strings for things like error messages, and possi-
bly even changing bitmaps for icons and buttons. OpenZinc automatically local-
izes objects based on the system's language and locale. If the program 
cannot support the system's language or locale for some reason, the program 
will use its fallback data, originally linked at compile time. 

The fallback data is the language, locale, and image information that is to be 
used if the run-time system's setup is not supported. We link in the fallback 
language as the LANG_DEF.CPP file. By default, this file contains English 
translations. If we wish to use another language, we need only copy the 
desired LANG_<ISO>.CPP file from the OpenZinc\SOURCE\INTL directory 
to the OpenZinc\SOURCE directory, rename it to LANG_DEF.CPP, and 
recompile the library. Similarly, LOC_DEF.CPP contains the fallback 
locale, which we can change by copying the desired LOC_<ISO>.CPP file 
from OpenZinc\SOURCE\INTL directory to the OpenZinc\SOURCE directory, 
renaming it to LOC_DEF.CPP, and recompiling. The images used to draw 

1 0 8 Getting Started with OpenZinc Programming 



objects are in IMG_DEF.CPP. If we wish to use different fallback images, 
copy the desired IMG_<ISO>.CPP file from OpenZinc\SOURCE\INTL to 

OpenZinc\SOURCE, rename it to IMG_DEF.CPP and recompile the library. In 
order for our program to support any of the languages and locales that OpenZinc 
supports, the application must find the I18N.DAT file at run time. This file 
contains all the localization data for the various languages and locales, as 
well as the map tables for using hardware character sets. 

We can easily change the language, locale, or images of any single object or 
of the entire application. To change the language for the entire application, 
simply call languageManager::LoadDefaultLanguage( )—languageManager is a static, global variable of type ZIL_LANGUAGE_MANAGER— 
and pass it the two-letter ISO language code. Similarly, we can call the local-
Manager.LoadDefaultLocale() function to set the application's locale, and 
decorationsManager.LoadDefaultDecorationsO will set the decorations for 
the entire application. Each object that uses language, locale, or decoration 
information also has a SetLanguage(), SetLocale(), or SetDecorations( ) 
function that can set the localization data for that instance of the object. We 
will discuss this further as part of the tutorial later in this book. 

Localizing our objects 
If we are hardcoding data for our objects by embedding the data in the code 
or by placing all the data in a single module or table, localizing is straightfor-
ward. If we are looking data up at run time, however, we need to know 
which language and locale should be presented. 

Detecting the We may want to detect at run time which language the environment is using, 
language We can do this by inspecting the global languageManager variable, which is 

a static variable of type ZIL_LANGUAGE_MANAGER. languageMan-
ager.defaultName is the two-letter ISO language code identifying which lan-
guage is in use. 

One way to use the language code is to use it as an extension on a data file 
previously translated to the language specified by that language code. For 
example, our data file SUPPORT.FR may contain the French translations of 
all the windows and text in our application. We may also have a file called 
SUPPORT.DE that contains the German translations. After determining the 

Getting Started with OpenZinc Programming 1 0 9 



Globalization 

110 Getting Started with OpenZinc Programming 

language code, we can create a file name, which in turn sets up the UI-
_WINDOW_OBJECT::defaultStorage. The system will then use that data 
file automatically when loading windows. For a complete list of the ISO lan-
guage codes, see "Appendix H—ISO Language Codes" in the Programmer 
Reference, Volume 2. 

Detecting the We may want to detect at run time which locale the environment is using, 
locale which will affect how our program formats dates, numbers, and times. Typi-

cally, we will not care about the locale, since OpenZinc objects format them-
selves. If we do need to know the locale, we can find out by inspecting the 
global locale Manager. defaultName variable, which will contain the two-let-
ter ISO locale or country code. For a complete list of ISO country codes see 
"Appendix G—ISO Country Codes" in the Programmer's Reference, Vol. 2. 

Building our There are two considerations when building our applications. The first is 
application whether the application is using the Unicode character set. OpenZinc applications 

do not need the Unicode character set to be globalized. Support for this char-
acter set is required only if the application supports double-byte characters. 
If the application does support Unicode, though, the OpenZinc library must be 
compiled for Unicode support. This is done by defining the 
ZIL_UNICODE precompiler variable in the UI_ENV.HPP source file and 
rebuilding OpenZinc Application Framework's libraries. ZIL_UNICODE must 
be defined when building our application, as well. 

The second consideration when building our application is how we choose to 
localize it. If we choose to compile in a file containing the library globaliza-
tion data for a specific locale, we must link it in. If we choose to either hard-
code the globalization data or access it at run time, we need take no other 
steps at compile time. 

Shipping our application 
In this section we talk about the files that we must ship with our application. 
We discuss the requirements for both 8-bit character and 16-bit character 
modes. 



Non-Unicode 
applications 

When shipping non-Unicode applications, we must ship the following files: 

• The executable (.EXE); 

• The data file (.DAT) containing resources created in the Designer, if we 
use one. 

• Any data files (I18N.DAT) with the library globalization data, if differ-
ent than our data file. 

Required files for 
Unicode 
applications 

When shipping Unicode applications we must ship the following files: 

• The executable (.EXE); 

• The data file (.DAT) containing resources created in the Designer, if we 
use one. 

• Any data files (I18N.DAT) with the library globalization data, if differ-
ent than our data file. 

If our application uses the GFX graphics library to support DOS graphics, 
we must also ship the UNICODE.FNT file. This file contains a font table 
for most languages in the Unicode character set. Note that the GFX graphics 
library is the only OpenZinc-supported DOS graphics library that supports the 
Unicode character set. Therefore if our application must support DOS graph-
ics, we must use the GFX graphics library. 

Conclusion 
In this chapter, we've discussed how to globalize a OpenZinc application, includ-
ing enabling our objects and localizing our code for Unicode. 

This is also the end of the section on OpenZinc's main concepts. In this section 
we've learned about OpenZinc's architecture, its windows and window objects, 
event handling and mapping, library classes, C++ features of OpenZinc, and glo-
balizing a program. In the next section, we'll begin learning how to write 
OpenZinc programs. 

Getting Started with OpenZinc Programming 111 



Globalization 

112 Getting Started with OpenZinc Programming 



section two 
OpenZinc programming 

Getting Started with OpenZinc Programming 113 



114 Getting Started with OpenZinc Programming 



Chapter 9 "Hello, Universe!" 

Getting Started with OpenZinc Programming 115 

Welcome to the section of this book on OpenZinc programming. This sec-
tion is full of tutorials and tips on how to write full-featured OpenZinc applica-
tions. We'll start out by writing a small OpenZinc program. 

Most programmers who learn a new language or programming environment 
will write a program that prints the phrase, "Hello, world," in a terminal win-
dow. But since our OpenZinc program can run on nearly every major platform in 
the computer marketplace, we'll print the phrase, "Hello, Universe!" into a 
text field in a graphical window. 



"Hello, Universe!" 

What we'll do 
Here are the steps we'll take in writing HELLOl.CPP. 

1. Load the library called UI_WIN.HPP to use OpenZinc's window object defi-
nitions and implementations. 

2. Create a function called UI_APPLICATION::Main(), which sets up 
the infrastructure of writing portable, event-driven applications. 

3. Create a generic window with the title "Hello Window." 

4. Add to the window the text "Hello, Universe!", and some other data, 
including flags. 

5. Add the window to the Window Manager, the control center for all win-
dows and window objects. 

6. Call a function called Control(), which acts as the main event loop, get-
ting events from the system and dispatching them to the application. 

Here's the source code to HELLO.CPP: 

// HELLOl.CPP (HELLO) 
// COPYRIGHT (C) 1990/1994. All Rights Reserved. 

// OpenZinc Software Incorporated. Pleasant Grove, Utah USA 

// May be freely copied, used and distributed. 

#include <ui_win.hpp> 
int UI_APPLICATION::Main(void) 
{ 
UIW_WINDOW *window = UIW_WINDOW::Generic (2, 2, 40, 6, 

"Hello Window"); 

*window 
+ new UIW_TEXT(0, 0, 0, 0, "Hello, Universe!", 256, 

WNF_NO_FLAGS, WOF_NON_FIELD_REGION); 

*windowManager 
+ window; 

Control(); 
return (0); 
} 

116 Getting Started with OpenZinc Programming 



When we compile the program and run the executable, we see a screen like 
this: 

Include files The first step we took in HELLOl.CPP is declaring the include files 
UIJWIN.HPP 

#include <ui_win.hpp> 

In OpenZinc, UI_WIN.HPP is the header file that, among other things, contains 
the definitions for window objects. OpenZinc also contains other include files in 
addition to UI_WIN.HPP for handling other types of OpenZinc information, for 
example, information for list objects, for screen displays, and so forth. 

These include files initialize information specific to OpenZinc-supported compil-
ers, freeing us from worrying about which files to include, and which not to 
include. We can always use the same headers no matter what compiler we 
use, making writing OpenZinc programs easier. 

One OpenZinc include file, UI_ENV.HPP, initializes information for specific 
environments. For example, it includes WINDOWS.H, which contains 
information for Microsoft Windows; OS2.H, which contains information for 
OS/2, and so forth. This is what allows your OpenZinc application to compile for 
different environments. Here is a list of all OpenZinc's include files, and what 
they do. 

TABLE 11. Include files in OpenZinc 

Include file What it contains or defines 

UI_ENV.HPP All values and information for specific compilers and envi-
ronments 

UI_GEN.HPP Low-level classes like user interface elements and lists 

UI_DSP.HPP How to handle screen displays for different environments 

UI_MAP.HPP Keyboard scan codes and virtual key mappings 

Getting Started with OpenZinc Programming 117 



"Hello, Universe!" 

118 Getting Started with OpenZinc Programming 

TABLE 11. Include files in OpenZinc 

Include file What it contains or defines 

UI_EVT.HPP Basic infrastructure for event handling 

U I _ W I N . H P P Window objects 

When we include the UI_WIN.HPP file, we also include the UI_EVT.HPP, 
UI_MAP.HPP, UI_DSP.HPP, UI_GEN.HPP, and UI_ENV.HPP files. This 
means we need only include UI_WIN.HPP to use all of OpenZinc's include 
files.; under normal programming circumstances we'll find it highly unlikely 
that we'll have to include any of those classes separately from 
UI_WIN.HPP 



A new Main( ) The next step we took in HELLOl.CPP after declaring include files was to 
create a function called Main() from the class UI_APPLICATION. Using 
this function will save a lot of code if we want to write an application that 
takes advantage of OpenZinc's benefits. Here's the code again: 

int UI_APPLICATiON:: Main(void) 
{ 
UIW_WINDOW *window = UIW_WIND0W::Generic(2, 2, 40, 6, 

"Hello Window"); 
*window 
+ new UIW_TEXT(0, 0, 0, 0, "Hello, Universe!", 256, 

WNF_NO_FLAGS, WOF_NON_FIELD_REGION); 
*windowManager 

+window; 

Control(); 

return (0); 
} 

Here's what this function does. Any meaningful OpenZinc program like 
HELLOl.CPP uses a certain amount of infrastructure to display informa-
tion on the screen; enable windows to respond to events from the mouse, 
keyboard, and the cursor; and to use and manage window objects—and to do 
all these things across every environment OpenZinc supports. We could build that 
infrastructure by hand for whatever environment under which we'd like to 
run our applications, or we could merely use the 
UI_APPLICATION::Main() function to create the infrastructure for us for 
every environment OpenZinc supports. 
In HELLOl.CPP, UI_APPLICATION saves us from having to write a lot 
of code, specifically code for managing windows and events. For example, 
the Window Manager, the part of HELLOl.CPP 's infrastructure that han-
dles incoming events from the Event Manager, comes from 
UI_APPLICATION. Also, ControI( ), the function that contains the main 
event loop, comes from UI_ APPLICATION In short, UI-
_APPLICATION is a quick and easy way to create that infrastructure so we 
don't have to create our own—and the infrastructure we needn't create is the 
one that won't break. If you want to know more about 
UI_APPLICATION::Main( ), hang on—we'll discuss it further in just a 
moment. 

Getting Started with OpenZinc Programming 119 



"Hello, Universe!" 

Creating a 
window and 
adding a text 
field 

UIW_WINDOW is OpenZinc's class for working with windows and window 
fields that we display on the screen. We've created a pointer to the 
UIW_WINDOW class called window, then called the class's member func-
tion Generic() with some parameters, and assigned the result to window. 
When we called Generic() with those parameters and assigned the result to 
window, in a short line of code we created a full-fledged window with a bor-
der, a maximize button, a minimize button, a system button, and a title. 

The next thing we did was to put some text into our window. Notice how we 
added a pointer to an instance of a UIW_TEXT class to window with the 
overloaded + operator: 

*window 
+ new UIW_TEXT(0, 0, 0, 0, "Hello, Universe!", 256, 

WNF_NO_FLAGS, WOF_NON_FIELD_REGION); 

The UIW_TEXT constructor contains more parameters, one of which is the 
text, "Hello, Universe!," that we've seen displayed inside the window. The 
instance of UIW_TEXT also contains two flags, values that, when turned on 
or off, affect the behavior of the object. 

The first flag, WNF_NO_FLAGS, tells the object not to associate any special 
flags with the text object. The second flag, WOF_NON_FIELD_REGION, 
tells the object to ignore any parameters it receives concerning where to dis-
play itself and to use the remaining space in the window. If we hadn't 
included this flag, the object would display "Hello, Universe!" wherever the 
positional parameters told it to. 

The last thing we did with our window was attach it to the Window Manager. 
*windowManager 

+ window; 
The Window Manager is OpenZinc's method of managing how windows behave, 
including their position and priority, and of accepting events from the Event 
Manager and passing them in turn to the windows that need to respond to 
those event. By attaching our window to the Window Manager, we placed 
the window and its subobjects on the screen and gave it the ability to accept 
events like "move the window." 

The next step we took in HELLOl.CPP in UI_APPLICATION::Main( ) 
was to create a new window. To do this, we used a function in the OpenZinc 
UIW_WINDOW class. 

UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6, 
"Hello Window"); 

120 Getting Started with OpenZinc Programming 



Let's take a step back from our code and look at a couple things. Notice that 
we've followed a certain order when we worked with windows. We first cre-
ated the window, then we attached the text to the window, and after we fin-
ished taking care of the window we attached the whole concatenation to the 
Window Manager. We followed this certain order because we wanted the 
window to appear on the screen all at once, instead of a piece at a time. If we 
hadn't followed this certain order the window would have displayed itself in 
a messy, semi-organized manner. 

Next, notice that we didn't explicitly create an instance of the Window Man-
ager, though we know one exists, since we added a window to it. We didn't 
have to create an instance; UI_APPLICATION::Main() did it for us. 
Again, UI_APPLICATION::Main() has saved us code while writing 
HELLO l.CPP. 

Responding to The next step we took in HELLOl.CPP after creating a window and adding 
events a text field was to call a function called ControI(). This function is the main 

event loop, the central structure of HELLOl.CPP, which takes over the 
application and waits for the user to create events. 

C o n t r o l ( ) ; 

When the user sends the "quit" event by closing the window or by pressing 
the appropriate keys, the main event loop quits the program. 

The main event loop is how OpenZinc gives us the ability to easily write event-
driven programs, one of OpenZinc's major design goals—and by using the Control() function we'll save time and code that we'd otherwise spend writing a 
main event loop by hand. Once we call ControI( ), we can sit back and let 
UI_APPLICATION::Main() get the events from the queue and route them 
to the window we just added to the Window Manager. 

Under the hood of UI_APPUCATION::Main( ) 
A little while ago, we introduced the idea of UI_APPLICATION::Main() 
without saying much about it. Now let's fill in the details of what's going on 
under the hood. 

Getting Started with OpenZinc Programming 121 



"Hello, Universe!" 

What UI_APP Right after we declared the proper include file, we created the function 
does int UI_APPLICATION::Main(void) 

Notice that this function has displaced the main() function we'd write in a 
non-OpenZinc program. Also, it comes from the OpenZinc class, UI_APPLICATION. 
How does UI_APPLICATION::Main() work? 

Every meaningful OpenZinc program includes a certain amount of infrastructure 
to display information on the screen; respond to events from the mouse, key-
board, and the cursor; and manage window objects. What OpenZinc has given us 
with UI_APPLICATION is a single function call to set up that infrastruc-
ture for use, giving us more time to write the core engine of our program. 

The Programmer's Reference tells us that the class initializes the standard 
control objects. This means using the UI_APPLICATION class will initial-
ize: 

• the screen display; 

• the Event Manager; and 

• the Window Manager 

In addition to setting up the infrastructure for us, UI_APPLICATION gives 
us automatic portability between environments. Using UI_APPLICATION 
lets us simply compile HELLOl.CPP to run under any environment with no 
modifications because this class contains the code needed to compile under 
all supported environments. If we didn't use UI_APPLICATION::Main(), 
we'd have to duplicate OpenZinc's efforts to compile our program under 
Microsoft Windows or any other supported platform. 

Main( ) Now that we know more about what UI_APPLICATION does for us, let's 
look up in the Programmer's Reference the actual function we called from 
the UI_APPLICATION class—Main(). We'll find that Main() does two 
things: it 

• sets up the initial application windows 

• calls or creates the main event loop. 

Here's why Main( ) takes the place of main( ) in our program. First, all 
operating environments don't support main( ) transparently—and every 
C++ program ever written must have that function or it'll refuse to compile. 
For example, if you've written programs for Microsoft Windows, you'll 
know you need to start out your program with the function WinMain(), not 
main(). 

122 Getting Started with OpenZinc Programming 



When we write a Windows program, we must include some special 
Microsoft libraries that, among other things, provide a main( ) function, 
which then call an undefined function called WinMain(), which, of course, 
we define ourselves. This satisfies the requirement of C++, and therefore 
your program will compile. 

When we use UI_APPLICATION::Main() in a OpenZinc program, we're doing 
something conceptually similar to what we just discussed. We're abstracting 
the idea of main( ) and WinMain( ) and generalizing the code required to 
handle those functions in multiple environments. Obviously, OpenZinc has done 
us a good turn by giving us one function for handling the Main() function in 
programs that run under multiple operating systems. 

Event flow and Control( ) 

One of the key concepts of HELLOl.CPP, and of OpenZinc applications in gen-
eral is that all OpenZinc applications are by design event driven. OpenZinc programs 
wait for the user to create an event by pressing a key on the keyboard, or 
manipulating the mouse—and when the user creates an event, the program 
reacts by calling the appropriate function. This program flow that consists of 
reacting to user input is the essence of OpenZinc's event-driven architecture. 

If we wanted, we could get events and route them by hand—later we'll learn 
how. But the UI_APPLICATION class allows us to include in 
HELLOl.CPP a function called Control( ) that automatically gets and 
routes events for us. All we must do is call Control( ) inside the Main( ) 
curly braces. 

But Control( ) may still seem a little mysterious. Here's what's going on 
inside the main event loop Control() creates: 

1. First, the user creates an event by pressing a keyboard key or by manipu-
lating the mouse. 

2. Next, the loop gets the event from the Event Manager and sends it to the 
Window Manager. The the Window Manager sends that information to 
the "Hello, Universe!" window. For example, if we click on the system 
button, the button that closes the window, we would create a "close" 
event. In turn, the Event Manager would get this event, and pass it to the 
Window Manager. 

Getting Started with OpenZinc Programming 1 2 3 



"Hello, Universe!" 

3. Last, the Control() function examines the Window Manager's return 
code. If it sees the "quit" event or if it sees that there are no more win-
dows attached to the Window Manager, it will quit the program. Other-
wise it will return to the first step—and start the main event loop all over 
again. 

HELLOl.CPP without UI_APPLICATION 
If you looked through the source code to UI_APPLICATION, you'd find 
that OpenZinc has written a huge amount of code to set up the display, the Event 
Manager, and the Window Manager for every platform it supports. If we 
didn't use UI_APPLICATION, we'd have to write a significant amount of 
code to 

• set up the display by hand for each environment under which we wanted 
to run HELLOl.CPP; 

• add by hand the keyboard, mouse, and cursor to the Event Manager; 

• create by hand the Window Manager; and 

• write a main event loop for routing events to the Window Manager. 

Not only would we have to do these things by hand, we'd have to do some of 
them once for each environment under which we planned to run 
HELLOl.CPP. Like we said before, using UI_APPLICATION gives us 
automatic portability between environments. 

The Event Writing a program without UI_APPLICATION::Main() means setting up 
Manager the Event Manager by hand and attaching input devices. Setting up the Event 

Manager by hand requires we use one parameter, display, which directs the 
input devices to display information on the screen. We tell the Event Man-
ager it can accept input from three devices, the keyboard, mouse, and cursor, 
or we could derive our own input device and add it as well. 

HELLOl.CPP only has one window, and so the Window Manager will 
route all events to that window. In other programs we'll write, however, the 
Window Manager will route events to the current window. This happens 
transparently, with or without UI_APPLICATION::Main(), and is a major 
advantage to OpenZinc over other environments. 

124 Getting Started with OpenZinc Programming 



Shutt ing down Without UI_APPLICATION::Main(), we'd have to take care of one more 
H E L L O l . C P P thing by hand—deleting the Window Manager, Event Manager, and display 

to free up memory. We'd use the following code to delete the Window Man-
ager, Event Manager, and display: 

// Clean up. 
delete windowManager; 
delete eventManager; 
delete display; 

Notice that we delete the Window Manager, Event Manager, and the display 
in the reverse order of their construction. Since the Window Manager main-
tains pointers to the Event Manager and to the display; if we didn't delete it 
first, it would have valid pointers pointing to deleted objects. Also, we'd 
have to delete the Event Manager before the display, since the Event Man-
ager maintains a pointer to the display. One thing we don't have to delete are 
objects attached to the event or window managers—the input devices, and 
the "Hello, Universe!" window, for example, are automatically destroyed 
when their respective manager is destroyed. 

Conclusion 
Writing HELLOl.CPP using UI_APPLICATION::Main() does a lot of 
things for us. OpenZinc recommends that we use this function in our OpenZinc pro-
grams to save us time setting up OpenZinc's infrastructure, increase reliability by 
eliminating unneeded code, and making it easy to set up a main event loop. 

In the next chapter, we're going to expand HELLOl.CPP to include other 
objects, including a help system and an error system. 

Getting Started with OpenZinc Programming 125 



"Hello, Universe!" 

126 Getting Started with OpenZinc Programming 



Chapter 10 Help and Error Systems 

In the last chapter, we learned how to create a window using OpenZinc. In this 
chapter, we'll extend HELLOl.CPP by adding windowed help and error 
systems, an exit function, and a "Universe Information" window. 

Getting Started with OpenZinc Programming 127 



Help arid Error Systems 

The code is located in \OpenZinc\TUT0R\HELL0\HELL02.CPP When we 
compile the program and run the executable, we see a screen like this: 

The help system The help system displays a window containing help information when the 
user asks for help. OpenZinc does not use the UI_HELP_SYSTEM unless we 
specifically ask for it. This way, we don't have to have the help system mod-
ules linked into our executables unless we tell OpenZinc to include it. 

128 Getting Started with OpenZinc Programming 



The following figure is an example of a help system window: 

We include the help system in H E L L 0 2 . C P P by creating a new instance of 
UI_HELP_SYSTEM with three parameters. 

UI_WINDOW_OBJECT::helpSystem = new UI_HELP_SYSTEM( "hello.dat", 
windowManager, HELP_GENERAL); 

Getting Started with OpenZinc Programming 129 



Help arid Error Systems 

Here's an explanation of the parameters we use to create a new help system. 

• HELLO.DAT is the name of the binary help file that the Designer gener-
ates from a text file. 

• windowMcinager is a pointer to the Window Manager. This argument 
allows the help system to display information if it encounters an error 
while initializing the help system. 

• HELP_GENERAL is the default help context the Window Manager will 
use if no context-specific help is available when requested. If we were 
creating a help system with more than one help context, we'd need to 
specify the name of the help context we wanted to use. 

Notice that when we created a UI_HELP_SYSTEM object, we assigned it 
to the static member variable of UI_WINDOW_OBJECT called helpSys-
tem. The reason we do this is that all of OpenZinc's window and window objects 
derive from UI_WINDOW_OBJECT, and since helpSystem is a static 
member variable, all windows and window objects we'll create will point to 
the same help system. 

We explained earlier in the chapter that the help system displays a window 
containing help information when the user asks for help. Here are the steps 
our window takes when the user requests help. 

1. The user sends a message asking for help from an object, which receives 
the message and, in turn, calls the help system with two arguments. 

EVENT_TYPE UI_WINDOW_OBJECT: .-Event(const UI_EVENT &event) { 

case L_HELP: 
// Display help for the current window. 

helpSystem->DisplayHelp(windowManager, helpContext); 
break; 

The two arguments the message uses are 

• windowManager, a pointer to the Window Manager; and 

• helpContext, the help context that specifies the text to display. 

1 3 0 Getting Started with OpenZinc Programming 



2. Next, the help system attaches its help window to the Window Manager, 
which displays it: 

void UI_HELP_SYSTEM:: DisplayHelp (UI_WINDOW_MANAGER *windowManager, 
HELP_CONTEXT helpContext) 

{ 

*windowManager + helpWindow; 
If the help window is already on the screen, the Window Manager 
updates its title and help text to current help information. 

Where does the help information come from? HELL02.CPP stores help 
text in the HELLO.TXT file, which resides on disk. Here's the help infor-
mation text: 

HELP_GENERAL 
General Help 
The second "Hello, Universe!" tutorial shows you 
how to create two windows using OpenZinc Application 
Framework and how to initialize the help and error 
systems. 
For more information about one of the windows 
presented in this application press <F1> while 
the window is at the front of the display. 

HELP_HELL0 UNIVERSE 
Hello Universe Help 
This window simply has a greeting. It uses 
the following window objects: 

UIW_WINDOW \ 
UIW_BORDER \ 
UIW_MAXIMIZE_BUTTON \ 
UIW_MINIMIZE_BUTTON \ 
UIW_SYSTEM_BUTTON \ 
UIW_TITLE \ 
UIW TEXT \ 

HELP_UNIVERSE_INFORMATION 
Universe Information Help 
This window contains information about the universe. 
It uses the following window objects: 

UIW_WINDOW \ 
UIW_B0RDER \ 
UIW_MAXIMIZE_BUTTON \ 
UIW_MINIMIZE BUTTON \ 
UIW_SYSTEM_BUTTON \ 
UIW_TITLE \ 
UIW_PROMPT \ 
UIW STRING \ 

Getting Started with OpenZinc Programming 131 



Help arid Error Systems 

UIW_SCROLL_BAR \ 
UIW_SCROLL_BAR \ 
UIW_TEXT \ 

However, the help system doesn't directly retrieve this text; rather, it 
retrieves a binary file that we must generate by running the text through the 
Help Editor in the Designer. 

When we convert HELLO.TXT, we get the following. 

• HELLO.DAT, which contains the help information and help contexts. 
This file is stored in binary form and should not be modified by the pro-
grammer. It is the only file HELL02.CPP will use, except, of course, 
the executable itself. 

• HELLO.HPP This file contains the C++ definitions for the help con-
texts. 

Each help context has some elements in common. They are: 

• Help context name. This name is converted to a C++ constant and speci-
fies the help context index referenced in your code. This name must be 
preceded by "—", which is used as a parsing token. The first help context 
name in HELLO.TXT is HELP_GENERAL. 

• Help context title. The text in the help window's title bar. It should 
describe the help context; our first help context title is "General Help," 
describing help for the entire application. 

• Help information. The text displayed in the help window. It should con-
tain all the information to help the user with what he is doing. 

The HELLO.HPP file generated is shown below: 

#ifdef USE_HELP_CONTEXTS 
const UI_HELP_CONTEXT HELP_GENERAL = 0x0001; 

// General Help 
const UI_HELP__CONTEXT HELP_HELLO_UNIVERSE = 0x0002; 

// Hello Universe Help 
const UI_HELP_CONTEXT HELP_UNIVERSE_INFORMATION = 0x0003; 

// Universe Information Help 
#endif 

We must include the .HPP file in all our programs that use help indexes. 
Here's the include statement in HELL02.CPP: 

#include <ui_win.hpp> 

#define USE_HELP_CONTEXTS 

#include "hello.hpp" 

132 Getting Started with OpenZinc Programming 



The error system 
The error system resembles the help system in that OpenZinc doesn't include it 
unless we specifically ask for it. Below is one of HELL02.CPP ' s error win-
dows: 

Getting Started with OpenZinc Programming 133 



Help arid Error Systems 

2. The error system attaches a modal error window to the screen display: 

UIS_STATUS UI_ERROR_SYSTEM::ReportError(UI_WINDOW_MANAGER 
*windowManager, UIS_STATUS errorStatus, ZIL_ICHAR *format, 

{ 

*windowManager + window; 

Modal windows prevent the user from interacting with any window other 
than the current window—in this case the error window—until the win-
dow is closed. Since the error window is modal, it will receive all event 
information until the user acknowledges the error and closes the window 
by selecting OK or Cancel. 

3. Once the user closes the window by selecting OK or Cancel, the error 
system destroys the error window. 

4. The object that sent the error request processes the error response and 
program flow continues. 

Exit function When a program is about to quit, sometimes we may want to call special 
functions—cleanup functions for example—or perhaps merely inform the 
user that the program will exit. OpenZinc has provided a way for us to do so. UI_-
WINDOW_MANAGER has a special member variable, exitFunction, 
which is a function called when the user attempts to exit the program, or, 
more precisely, when the Window Manager receives an LJEXIT or 
L_EXIT_FUNCTION message. The exit function can have any function 
name, but must have the following declaration: 

static EVENT_TYPE ExitFunction(UI_DISPLAY *display, 
UI_EVENT_MANAGER *eventManager, UI_WINDOW_MANAGER *windowManager) 

This declaration gives the exit function pointers to the current display, Event 
Manager, and Window Manager, which the function can use to draw to the 
screen, post events, or display windows. 

The example above displays a message window with an OK button and a 
Cancel button. When the user presses the OK button, the program places an 
L_EXIT message on the event queue, and the application ends. Otherwise, 
the program simply removes the message window and continues. The fol-
lowing code shows the implementation of this exit function: 

static EVENT_TYPE ExitFunction(UI_DISPEAY *display, UI_EVENT_MANAGER *, 
UI_WINDOW_MANAGER *windowManager) 

{ 
ZAF MESSAGE WINDOW *window = 

1 3 4 Getting Started with OpenZinc Programming 



new ZAF_MESSAGE_WINDOW("Hello Universe Tutorial", 
UIW_ICON::_asteriskIconName, ZIL_MSG_OK | ZIL_MSG_CANCEL, 
ZIL_MSG_OK, 
"This will close the Hello Universe application."); 

EVENT_TYPE ccode = S_CONTINUE; 

// Get user response, 

if (window->Control() == ZIL_DLG_OK) 

ccode = L_EXIT; 
// Control() removes window from the Window Manager but doesn't 

// delete it. 

delete window; 

return (ccode); 
} 

Multiple 
windows 

In the last chapter, we created this window with the accompanying code: 

Getting Started with OpenZinc Programming 135 

To simplify this window's code, we'll use Generic( ) static functions. Two 
OpenZinc objects have a Generic() function: UIW_WINDOW and UIW-

_SYSTEM_BUTTON. The UIW_WINDOW::Generic() member func 
tion automatically creates a window with a border, maximize button, mini-
mize button, system button, and title. The following function shows how we 
can replace this code: 

static UIW_WINDOW *HelloWorldWindowl() 
{ 

// Create the standard Hello World! window. 
UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6, 

"Hello World Window", NULL, WOF_NO_FLAGS, WOAF_NO_FLAGS, 
HELP_HELLO_WORLD); 

// Add the window objects to the window. 
*window 
+ new UIW_TEXT(0, 0, 0, 0, "Hello World!", 256, 

WNF_NO_FLAGS, WOF_NON_FIELD_REGION); 



Help arid Error Systems 

// Return a pointer to the window. 

return (window); 
} 

Using this method, the new operator is not required for window creation. 
The UIW_WINDOW::Generic() function actually calls the new operator 
for the UIW_WINDOW object, as well as for all the default objects 
attached to the window. It then returns a pointer to the UIW_WINDOW 
class object. 

The window created above contains a nonfield region text object. This 
means that the text object occupies all of the remaining space of the window 
not taken by the previously added window objects, the border, buttons, and 
title. Under normal circumstances, a nonfield region object takes up the 
entire remaining window space, and will cover up any field region objects. 
However, more than one nonfield region object may reside with field region 
objects within a single window. 

Our Universe Information window is an example of a window that uses field 
window objects to display information. This window and its code implemen-
tation is shown below: 

static UIW_WINDOW *HelloWindow2(void) 
{ 

// Create the universe information window. 

UIW_WINDOW *window = UIW_WINDOW::Generic(5, 5, 52, 12, 
"Universe Information Window", ZIL_NULLP (UI_WIND0W_0BJECT), 
WOF_NO_FLAGS, W0AF_N0_SIZE, HELP_UNIVERSE_INFORMATION); 

int answerValue = 42; 
// Add the window objects to the window. 
*window 

+ new UIW_PROMPT(2, 1, "Age:") 

136 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 137 



Help arid Error Systems 

The second code sample defines a position and size indicator, and does not 
set the WOF_NON_FIELD_REGION flag. Instead, it uses WOF_BORDER 
to display the boundaries of the field's region. 

Program flow Notice that this program flow is the same as that discussed in the previous 
tutorial, except that there are two windows on the screen instead of one. This 
flow remains unchanged until an error occurs or until the user requests help, 
when the help or error system adds its window to the Window Manager— 
and then the program may display up to four windows. 

Cleanup Since we created new help and error systems, we must destroy them at the 
end of the application. Although they are members of UI_WINDOW_-
OBJECT, they must be destroyed explicitly since they are static. 

// Clean up. 
delete UI_WINDOW_OBJECT::defaultStorage; 
delete UI_WINDOW_OBJECT::helpSystem; 
delete UI_WINDOW_OBJECT::errorSystem; 

Conclusion 
In this chapter, we learned how to create a user interface programmatically, 
and to use a help and error system in a OpenZinc application. In the next chapter, 
we'll create the same user interface using OpenZinc Designer, an interactive tool 
for creating user interfaces visually. 

138 Getting Started with OpenZinc Programming 



Using the Designer 

in the last tutorial, we created a user interface programmatically. In this 
tutorial, we'll create the same window in a manner of minutes and with a 
single line of code using OpenZinc Designer. 

The code for this tutorial is in \OpenZinc\TUT0R\HELL0\HELL03.CPP. 

Getting Started with OpenZinc Programming 139 



Using the Designer 

What we'll do 
We'll use OpenZinc Designer to accomplish nearly all of the steps in this tutorial. 

1. Using the Designer, create a new persistent object file. 

2. Using the Designer, create a window and edit its information. 

3. Using the Designer, create a window object and edit its information. 

Once the application is running, we should see the following on the screen: 

1 4 0 Getting Started with OpenZinc Programming 



Using the Designer 

Creating a file Follow these steps to create a persistent object that will store the "Hello, 
Universe!" windows: 

1. Select File from the main control menu. This displays the following menu: 

2. Select New., from the pop-up menu. After you select this item a new win-
dow appears: 

3. Enter the file name by typing 

hello 

in the field adjacent to the Filename prompt. This is the file name the 
Designer calls our file when we save it to disk. 

4. Create the file by selecting the OK button. Now OpenZinc Designer does the 
following: 

• Creates a HELLO.DAT file that will store the "Hello, Universe!" 
windows; 

• Removes the New., window from the screen; 

Getting Started with OpenZinc Programming 141 



Using the Designer 

• Updates the control window's title to reflect the active HELLO.DAT 
file. 

Creating a .We created a window and its window objects in the last chapter by writing 
window some code. Now we're going to create the same window and window objects 

with OpenZinc Designer by following these steps. 

1. Select Window from the main control menu. Selecting this option causes 
the following pop-up menu to be displayed: 

2. Select Create from the pop-up window. Now a generic window appears 
on the screen: 

3. Size the window to a size that looks about right. You can adjust the size 
later if necessary. You should make the window large enough to handle 
the new title information and default "Hello, Universe!" text. 

1 4 2 Getting Started with OpenZinc Programming 



4. Enter an identification for the window by selecting Edit I Object from 
the main control menu or by double clicking the left mouse button on the 
window. Selecting this option causes the window editor to be displayed: 

5. Enter 

Hello Window 

in the Title: field. 

6. Enter the window identification by typing HELLO_UNIVERSE_-
WINDOW in the Name: field. 

7. Save the identification by selecting the OK button. 

The window should now look like this: 

Getting Started with OpenZinc Programming 143 



Using the Designer 

Creating a We create the "Hello, Universe!" text the same way we created the window 
window object in the last few steps: 

1. Select the Text object button from the main control window's toolbar or 
select Object I Input I Text from the main control menu. 

2. Place the text object in the middle of the "Hello, Universe!" window. The 
window should now have a text field within its border: 

3. Change the text object's default information by 

• calling the text object editor by double-clicking the left mouse button 
on the text object 

• typing 

Hello, Universe! 
in the field adjacent to the Text: prompt 

' typing 

256 

in the field adjacent to the Length: prompt 

• turning off the vertical scroll bar option 

• turning off the Don't wrap text option 

• turning on the nonfield region option in the Advanced options 

1 4 4 Getting Started with OpenZinc Programming 



Creating 
additional 
windows 

The universe information window that we created programmatically in the 
last chapter looked like this: 

Follow these steps to create this window in the Designer: 

1. Create the window by selecting Window I Create from the control menu. 
Make sure the window is large enough so that the accompanying field 
information fits within the window's border. 

2. Use the window editor to change the window title to read 

Universe Information Window 

3. Change the window identification by calling the window editor and 
entering UNIVERSE_INFORMATION_WINDOW as the Name. 

4. Select Ok to exit the window editor. 

5. Create the age prompt by selecting the Prompt button from the toolbar or 
selecting Object I Static I Prompt from the control menu and place the 
field at the left-top corner of the window. Call the prompt editor by dou-
ble-clicking on it with the mouse or by selecting Edit I Object from the 
control menu and enter 

Age: 

as the prompt's text. 
6. Create the age string field and place it next to the age prompt. Enter 

50 
as the default length for the string field, and enter 

Really old. 

as the string's text. 

Getting Started with OpenZinc Programming 1 4 5 



Using the Designer 

7. Create the weight prompt and place it under the Age prompt. Change the 
prompt's text to 

Weight:. 

"How do I create an icon in the Designer, create a 
window in code, and have the window minimize to the 
icon?" 

First, create an icon in the Image Editor of the Designer and save 
it to a .DAT file. You must save the icon in the Image Editor, and 
save the file opened in the Designer. 

Next, assign UI_WINDOW_OBJECT::defaultStorage to point to 
the .DAT file containing the icon image. 

After that, create the window in code. Create a UIWJCON object 
with the saved image and set the icon object's 
ICF_MINIMIZE_OBJECT and WOF_SUPPORT_OBJECT flags. 
Add the icon object to the window. Add the window to the Window 
Manager. 

To test your handiwork, minimize the window to see the icon with 
its assigned image. 

8. Create the weight string field and place it next to the weight prompt. 
Enter 

50 

as the default length for the string, and enter 

Really heavy. 

as the string's text. 

9. Create the size prompt and place it under the weight prompt. Enter 

Size: 

as the prompt's text. 
10. Create the size string and place it next to the size prompt. Set the length 

for this object to 

50 

and enter 

1 4 6 Getting Started with OpenZinc Programming 



Really big. 

as the string's text. 

11. Create the Universe Information text field and place it under the size 
prompt. Set the length to 

256 

and the default text to 

The universe is very complicated and not very well understood 
(at least not by this programmer). The above statistics should 
therefore be taken as approximations. The answer given above is 
generally thought to be correct. The problem, of course, is that 
nobody knows what the question is. 

To add a vertical scroll bar to the text field, check the Vertical Scroll Bar 
checkbox. 

12. Select the OK button to complete the changes to the window. 

Now we're finished creating the Universe Information window. 

Saving the file The "Hello, Universe!" windows are saved when we select File I Save from 
the control menu. Here's what OpenZinc Designer does when the windows are 
saved: 

Updates the HELLO.DAT file. Contains the binary information associated 
with the objects saved during the design session. Help contexts and window 
objects like those in this and the last chapter live in the same .DAT file. 

Creates the HELLO.CPP file. Contains the definition for the objectTable. 
This structure provides read access points for objects saved to disk. The 
entries inside this table depend on the types of objects that were created in 
the Designer. 

Creates the HELLO.HPP file. Contains the numeric identifications, which 
are IDs associated with those strings we entered next to the stringID prompt 
and the help context definitions. The string identification for each field 
within a window is unique. Items within subwindows, combo boxes, or list 
boxes have unique numeric identifications within that scope. 

Getting Started with OpenZinc Programming 1 4 7 



Using the Designer 

Window access The code used in this tutorial has the same initialization process as each pre-
ceding tutorial in that they all follow the same three steps: 

• Create the display 

• Create the Event Manager and add input devices 

• Create the Window Manager 

After the Window Manager is created, however, the program adds the two 
universe information windows to the Window Manager: 

// Add the two windows to the window manager. 
UI_WIND0W__0BJECT *windowl = 

UI_WINDOW_OBJECT::New("hello.dat~HELLO_UNIVERSE_WINDOW"); 
UI_WINDOW__OBJECT *window2 = 

UI_WINDOW_OBJECT::New("hello.dat~UNIVERSE_INFORMATION_WINDOW"); 
*windowManager 

+ windowl 

+ window2; 
In the code above, we retrieve HELLO_UNIVERSE_WINDOW and 
UNIVERSE_INFORMATION_WINDOW from the HELLO.DAT data 
file, then add them to the Window Manager. 

An alternative way of reading the objects from disk is shown below: 

*windowManager 
+ UI_WIND0W_0BJECT::New("hello.dat~HELLO_UNIVERSE_WINDOW") + 

UI_WINDOW__OBJECT::New("hello.dat~UNIVERSE_INFORMATION_WINDOW"); 

This method allows for error correction. For example, if one of the windows 
was not found in the file, New() will return a NULL value. When a NULL 
value is added to the Window Manager, no change is made. 

As we mentioned before, OpenZinc Designer created a HELLO.CPP code file. 
This file must be compiled and linked with the HELL03 executable. It con-
tains an object table, used by window object constructors to read class infor-
mation from the data file. 

Run t ime The persistent window objects contain all the information necessary to 
features ensure that the application runs as if we created the object programmatically, 

as we did in the previous tutorial. 

1 4 8 Getting Started with OpenZinc Programming 



Conclusion 
In this chapter we learned how to create a window in the Designer that we 
created earlier programmatically. The Designer is a major benefit, since cre-
ating windows and window objects becomes easier when we can manipulate 
them on screen the same way we would work with them while running an 
application. 

In the next chapter, we'll learn more about writing OpenZinc applications that use 
events in both top-down and bottom-up operating environments. 

Getting Started with OpenZinc Programming 149 



Using the Designer 

Getting Started with OpenZinc Programming 150 



Chapter 12 Event flow 

This tutorial demonstrates how OpenZinc handles system events in top-down 
and bottom-up operating environments. When we're finished, we should 
understand how window objects display information and receive input from 
the user; how to check data entry with user functions; and how to write a 
main event loop. Here we'll examine a dictionary program called 
WORD2.EXE 

Getting Started with OpenZinc Programming 151 



Event flow 

Here are the steps we'll take in writing WORD2.CPP. 

1. Create the DICTIONARY_WINDOW class and all its member func-
tions. 

2. Create an instance of the DICTIONARY_WINDOW and add it to the Window Manager. 

3. The DICTIONARY_WINDOW creates a DICTIONARY, which loads 
the 

data from disk. 
4. When the user types a word and hits <Enter> we'll look the word up in 

the dictionary. 

Running the To use the dictionary program, compile and run the application 
program WORD2.EXE. This program only knows the word good, bad, begin, and 

end. To look up a word, type it in the Enter a word field and press <Enter>. 

If the word is in the dictionary, the program will display the definition, ant-
onyms, and 

synonyms. If the word is not in the dictionary, it will display the 
error message, "That 

word was not found in the dictionary." When you are 
finished using the dictionary, exit 

the program by closing the window. 
Source code The source code for this program is located in \OpenZinc\TUTOR\WORD, and 

contains the following files: 
• WORD2.CPP. Contains UI_APPLICATION::Main(), as well as the 

implementation 
of the DICTIONARY.WINDOW, DICTIONARY, 

and D_WORD classes. 

• WORD2.HPP. Contains the declarations for the DICTIONARY_-
WINDOW, DICTIONARY, D_WORD, and _WORD classes. 

• WORD.DCT. Contains the dictionary database file. 

• *.DEF, *.RC. Contains the environment-specific definitions and 
resources for compiling OpenZinc programs for environments other than 
DOS. 

• *.MAK. Contains the compiler-dependent makefiles associated with the 
Word program. Consult "Appendix A—Compiler Considerations" for 
information on compiling for each OpenZinc-supported platform. 

1 5 2 Getting Started with OpenZinc Programming 

What we'l/ do 



Class definitions The dictionary window is implemented in a class called 
DICTIONARY_WINDOW. Here's its definition: 

class DICTIONARY_WINDOW : public UIW_WINDOW 
{ 
public: 

DICTIONARY_WINDOW(void); 
~DICTIONARY_WINDOW(void); 
int dictionaryOpened; 

private: 
DICTIONARY dictionary; 
UIW_STRING *inputField; 
UIW_TEXT *definitionField; 
UIW_STRING *antonymField; 
UIW_STRING *synonymField; 
static EVENT_TYPE LookUpWord(UI_WIND0W_0BJECT *string, 

UI_EVENT &event, EVENT_TYPE ccode); 
}; 

DICTIONARY_WINDOW uses the following member variables: 

• dictionaryOpened, which indicates if the data file was successfully 
opened. Since constructors cannot return values, we must set a flag to 
denote the dictionary status. This value is public so that the controlling 
program can verify that the dictionary was created. 

• dictionary, the pointer to the dictionary that is created in the constructor 
for DICTIONARY_WINDOW. This variable is used only by the 
DICTION ARY_WINDOW class and therefore is private. 

• inputField, a pointer to the UIW_STRING field that is used to collect 
the input word from the user. This variable is only used by the 
DICTIONARY_WINDOW class and therefore is made private. 

• definitionField, a pointer to the UIW_TEXT field that is used to display 
the definition for the input word. This variable is only used by the 
DICTIONARY_WINDOW class and therefore is made private. 

• antonymField, a pointer to the UIW_STRING field that is used to dis-
play the antonyms for the input word. This variable is only used by the 
DICTIONARY_WINDOW class and therefore is made private. 

• synonymField, a pointer to the UIW_STRING field that is used to dis-
play the synonyms for the input word. This variable is only used by the 
DICTIONARY_WINDOW class and therefore is made private. 

Getting Started with OpenZinc Programming 153 



Event flow 

Below is the definition for the DICTIONARY: 

class DICTIONARY : public UI_LIST 
{ 
public: 

int opened; 
DICTIONARY(char *name); 
static int FindWord(void *element, void *matchData); 
D_WORD *First(void); 
D_WORD *Get(const char *word); 

}; 

DICTIONARY uses the following member variables: 

• opened, which tells if the dictionary was successfully opened. Since con-
structors cannot return values, we must set a flag to denote the dictionary 
status. This value is public so that the controlling program can verify that 
the dictionary was created. 

D_WORD is the dictionary class that contains the words in the dictionary. 
Below is the definition for the D_WORD class: 

class D_WORD : public UI_ELEMENT 
{ 
public: 

char *string; 

char *definition; 
UI_LIST ntonymList; 
UI_LIST ynonymList; 
D_WORD(FILE *file); 
~D_WORD(void); 
D_WORD *Next(void); 

}; 

D_WORD uses the following member variables: 

• string, which contains the actual word entry in the dictionary. 

• definition, which contains the definition string of the word. 

• antonymList, a list of antonyms that apply to the dictionary entry. 

• synonymList, a list of synonyms that apply to the dictionary entry. 

_WORD is a support class used to hold the words in the antonym and syn-
onym lists: 

class _WORD : public UI_ELEMENT 
{ 
public: 

char *string; 

Getting Started with OpenZinc Programming 154 



_W0RD(const char *_string); 
~_W0RD(void); 
_WORD *Next(void); 

}; 

_WORD uses the following member variable: 

* string, a character string that contains a word. 

Creating the window 
We start out by deriving our DICTIONARY_WINDOW class from the 

OpenZinc class UIW_WINDOW. Instead of using an instance of the existing 
UIW_WINDOW class, our derived class will also handle input from and 
output to the window fields and communicate with our dictionary. 

When our program calls the DICTIONARY_WINDOW constructor, it cre-
ates the dictionary window. The DICTIONARY_WINDOW creates each 
of the fields and adds them to the window using the C++ reserved word this 
and the overloaded + operator. The DICTIONARY_WINDOW constructor 
is shown below: 

DICTIONARY^WINDCW: :DICTIONMY_WINDCW(void) : UIW_WINDCW(16, 6, 41, 14) 
{ 

if (dictionaryOpened) 
{ 

// Create the window fields. 
inputField = new UIW_STRING(17, 1, 20, "", 40, 

STF_NO_FLAGS, WOF_BORDER | W0F_AUT0_CLEAR, 
DICTIONARY_WINDQW::LookUpWord); 

definitionField = new UIW_TEXT(17, 3, 20, 4,"", 100, 
TXF_NO_FLAGS, WOF_BORDER); 

antonymField = new UIW_STRING(17, 8, 20, "", 50, TXF_NO_FLAGS, 
WOF_BORDER); 

synonymField = new UIW_STRING(17, 10, 20, "", 50, 
TXF_NO_FLAGS, WOF_BORDER); *this 
+ new UIW BORDER 

+ new UIW_MAXIMIZE_BUTTON 

+ new UIW_MINIMIZE_BUTTON 

+ new UIW SYSTEM BUTTON 
Getting Started with OpenZinc Programming 155 



Event flow 

+ new UIW__TTTLE("Dictionary") 
+ new UIW_PR0MPT(2, 1, "Enter a word:") 

+ inputField 
+ new UIW_PR0MPT(2, 3, "Definition:") 

+ definitionField 
+ new UIW_PR0MPT(2, 8, "Antonyms:") 

+ antonymField 
+ new UIW_PR0MPT(2, 10, "Synonyms:") 

+ synonymField; 
} 

} 
We add the objects in our dictionary window to the window inside the con-
structor so that when we create our DICTIONARY_WINDOW object, we 
only have to write a few lines of code to display it on the screen. Here's the 
code taken from the UI_APPLICATION::Main() function in the 
WORD2.CPP file: 

// Create the dictionary window. 
DICTI0NARY_WINDOW *dictionary = new DICTIONARY^WINDOW(); 

// If the dictionary was opened, add it to the window manager, if (dietionary->dictionaryOpened) 

*windowManager + dictionary; 
else 

{ 
dictionary->errorSystem->ReportError(windowManager, -1, 

"The dictionary file 'WORD.DCT' was not found."); 
delete dictionary; 

} 

If we add the objects, not in the constructor, but when we create an instance 
of the DICTIONARY_WINDOW class, then we would duplicate code 
each time we created an instance of that class. Adding the objects inside the 
constructor lets us write less code and provides a stronger encapsulation of 
data and code. 

156 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 157 



Event flow 

Here's the initial check in LookUpWord(): 

// Return if just entering. 
if (ccode != L_SELECT) 

return errorCode; 

As the user function calls the dictionary to verify the input word, it must 
have a pointer to the current dictionary object. Since the input string is 
attached to the DICTIONARY_WINDOW, we can access the dictionary 
window using the string's parent pointer. Here's how we get a pointer to the 
correct instance: 

DICTIONARY_WINDOW *dictionaryWindow = 
(DICTIONARY_WINDOW *)object->parent; 

Now that our user function has the dictionaryWindow pointer, we have 
access to the public variables and functions of the 
DICTIONARY_WINDOW class, including the variable dictionary, and it 
can proceed with calling the dictionary to verify the input word. Now the 
user function calls the function DICTIONARY: :Get() through the dictio-
naryWindow pointer. This function will return a NULL if the word is not 
found, or, if it is found, will return a pointer to a D_WORD structure that 
contains the input word and its associated information; if the return value is a 
valid pointer, DICTIONARY::Get() writes the word and its antonyms and 
synonyms to the appropriate window fields by calling each field's DataSet() 
function. If the word isn't in the dictionary, our program will display an error 
message and return a -1. Otherwise, we return a 0. 

Following events 
Now that we understand how the program operates, let's follow how events 
flow through the system. We can begin by following the event that's created 
when the user presses the "G" key on the keyboard. Though we'll study our 
OpenZinc dictionary running under DOS and Windows, our program running in 
other operating environments will pass messages in the same way as they do 
in the DOS and Windows examples, though event messages and their mean-
ings differ. 

158 Getting Started with OpenZinc Programming 



Event f low—DOS When the user presses the "G" key, the computer places the character in the 
computer's keyboard buffer. Here's the code in our dictionary program that 
actually gets the event from the buffer. 

EVENT_TYPE ccode; 

UI_EVENT event; 
do 

{ 
// Get input from the user. 

eventManager->Get(event); 
// Send event information to the window manager, 
ccode = windowManager->Event(event); 

}while (ccode != L_EXIT && ccode != S_NO_OBJECT); 
As eventManager->Get() executes, it polls each of the devices attached to 
the Event Manager. If the keyboard or another device has placed an event in 
its buffer, OpenZinc creates a UI_EVENT structure, fills it with the event, and 
puts on the end of the event queue. 

Let's assume that there were no other events on the queue when the program 
placed the "G" key event on the queue. The Get() function takes the event 
variable and fills it with the "G" event. When program control returns from 
the Get() function, the call to windowManager->Event() passes the "G" 
event to the Window Manager. 

"How can I intercept an event that is filtered?" 
If the message is environment-specific, you must trap it in your derived 
object's Event(). If you want to convert the message to a logical event, 
you must place in the event map table assigned to the derived object a 
mapping for the message 

Let's take a look at what happens when the Window Manager receives the 
"G" key, or any other event under DOS. First, the Window Manager sends 
the event to the current window object. If the Window Manager can process 
it, it does. Otherwise it passes it to its current child, which attempts to pro-
cess it. If it can't, it passes it down, and so forth. This is top-down process-
ing. 

Getting Started with OpenZinc Programming 159 



Event flow 

If the event carries a specified region like a mouse click, the Window Man-
ager checks to see if another object should become current. If so, the Win-
dow Manager makes that object current, and passes the event to that object. 
If no window can handle the event, the Window Manager just returns an 
S_UNKNOWN message to the system, and the event is ignored. 

Now back to our dictionary program. When the user presses the "G" key, the 
Window Manager's current object is the dictionary window. The window 
receives the event and sends it to its own current object, the UIW_STRING 
field. The string's Event() function receives the event from the window, and 
calls UI_WINDOW_OBJECT::LogicalEvent() to look for a logical map-
ping of the event. Once the LogicalEvent() function determines the event is 
a "G" keystroke, the character is copied into the string's memory buffer and 
the string is updated on the screen. A control code is then returned to the 
object's parent and finally to the Window Manager which returns to the main 
do loop, where the sequence starts over again. 

Event f low— The Microsoft Windows version of OpenZinc is simpler than the DOS version. In 
Windows contrast to DOS, which simply dumps user input in a buffer to wait for a pro-

gram to use it, Windows handles all the input from the user. This means OpenZinc 
need only interpret the messages, and need not handle the events. 

When a UIW_STRING field is created, OpenZinc creates an actual Windows 
string object. In the Windows version, OpenZinc serves as a layer between the 
existing Windows system and the user application that was written using 

OpenZinc. This model allows programs to be ported easily to any environment 
OpenZinc supports. 

In order to follow an event through the OpenZinc system while running under 
Windows, we must revisit how Windows passes messages. Windows puts 
messages on a Windows message queue, which can dispatch those messages 
directly to the current field on the current object. Messages are passed to an 
object with a special member function known as a "callback" function, 
which is the Windows equivalent of OpenZinc's Event() function. 

Now consider the example of the "G" key being pressed while a 
UIW_STRING field is current. Look at the "do" loop in the function 
UI_APPLICATION::Main(): 

EVENT_TYPE ccode; 
UI_EVENT event; 
do 
{ 

// Get input from the user. 

160 Getting Started with OpenZinc Programming 



eventManager->Get(event); 
// Send event information to the window manager. 
ccode = windowManager->Event(event); 

} while (ccode != L_EXIT && ccode != S_NO_OBJECT); 
At some point in the execution of the program, Windows creates a message 
and puts it on the Windows message queue. When eventManager->Get() is 
called, it doesn't return until Windows has created a message and had put it 
on the Windows message queue. Once eventManager->Get() returns, the 
call to windowManager->Event() instructs Windows to dispatch the mes-
sage. When Windows dispatches the message, Windows calls the current 
window object's event function, UIW_STRING::Event() in this case, say-
ing that the user pressed the character "G." When the current window 
object's event function receives the "G" message, just as in DOS, it deter-
mines whether or not it can interpret the event. If it can, it does so, and then 
passes it back to Windows so that the "G" character may be painted on the 
screen. If it cannot, it returns an S_UNKNOWN and the event goes unproc-
essed. This is bottom-up processing. 

Conclusion 

in this chapter, we've seen how objects display information and receive 
input from the user, how we can use user functions to check data entry, and 
we've seen more about how OpenZinc handles events. Further, now that we know 
how our dictionary application works, we'll find it easier to use in the next 
chapter, where we'll write a program to store and retrieve data in the OpenZinc 
data file. 

Getting Started with OpenZinc Programming 161 



Event flow 

162 Getting Started with OpenZinc Programming 



The OpenZinc Data File 

in the last chapter, we learned how events flow by watching how our dic-
tionary program responded to events. In this tutorial, we'll use a modified 
version of the dictionary program to learn how to use the OpenZinc data file to 
store data on disk and retrieve it later. To do so, we'll use as a springboard 
the dictionary program we used in the last chapter. Then we'll modify it to 
allow us to create and delete our own entries, modify them, and save them to 
a file on the disk. 

Getting Started with OpenZinc Programming 163 



The OpenZinc Data File 

What we'll do 
Here are the steps we'll take in writing WORD3.CPP. 

1. Load the window from the .DAT file and create the dictionary. Once 
we've loaded the window, assign each button the same static user func-
tion. 

2. Create the member functions. 

3. Create an instance of the DICTIONARY_WINDOW and add it to the 
Window Manager. 

4. Process user updates and queries. 

5. If the user quits the application, commit the data file to disk, close the 
temporary file, and then free up the memory the program used. 

Running the Compile the source code and run the executable. You should see the follow-
program ing window on the screen: 

At this point, the dictionary database will be empty. To add words to the dic-
tionary, simply type the word, its definition, and an antonym and synonym in 
the appropriate fields, and press the Save button at the bottom of the win-
dow. To look up a word you have entered, type it in the Enter a word: field 
and press the Lookup button. To delete a word, type it in the Enter a word: 
field and press the Delete button When finished using the dictionary, select 
Close from the system button's pop-up menu and exit the program. 

164 Getting Started with OpenZinc Programming 



Source code The source code for our tutorial is located in \OpenZinc\TUTOR\WORD. and 
contains the following files: 

• WORD3.CPP. Contains the main event loop inside UI_APPLI-
CATION::Main() , as well as the implementation of the DIC-
TIONARY_WINDOW, and D_ENTRY classes. 

• WORD3.HPP. The declarations for the DICTIONARY_WINDOW, 
DICTIONARY, and D_ENTRY classes. 

• WORD_WIN.CPP. The object table for the objects we created in the 
Designer. 

• WORD_WIN.DAT. The data file created in the Designer. Contains the 
data for creating the dictionary window and its fields. 

• WORD_WIN.HPP. The header information for WORD_WIN.DAT and 
its help file. 

• *.DEF, *.RC. The definition and resource files when compiling for dif-
ferent environments. 

• *.MAK. The compiler-dependent makefiles. 

Program flow Using UI_APPLICATION::Main( )'s built-in main event loop, help sys-
tem, and error handling, our program flow is simple. The first step is to cre-
ate a new error system. Next we create the DICTIONARY_WINDOW, 
which creates a new dictionary. Once created, we attach the dictionary win-
dow to the Window Manager if the load goes well; if the load fails, we ask 
the error system to report an error to the user. Once we've set these things 
up, we can turn over event handling to OpenZinc with UI_APPLICATION::Control(). And when the program flow falls through Control() , we 
delete the error system we've created. 

Here's the code we used to set up UI_APPLICATION::Main( ). 

int UI_APPLICATION::Main(void) 
{ 

// The UI_APPLICATION constructor automatically initializ the 
// display, eventManager, and windowManager variables. 
// This line fixes linkers that don't look for main inthe.LIBs UI_APPLICATION::LinkMain(); 

// Initialize the error system. 
UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM; 
// Create the dictionary window. 
DICTIONARY_WIND0W *dictionary = new DICTIONARY_WINDOW("word.dat"); 

if (!FlagSet(dictionary->woStatus, WOS_READ_ERROR)) 
*windowManager + dictionary; 

else 

Getting Started with OpenZinc Programming 165 



The OpenZinc Data File 

{ 
UI_WINDOW_OBJECT::errorSystem->ReportError(windowManager, 

WOS_NO_STATUS, 
"An error was encountered trying to open word_win.dat"); 

return (1); 
}// Process user responses. 

UI_APPLICATION::Control(); 
// Clean up. 
delete UI_WINDOW_OBJECT::errorSystem; 

return (0); 
} 

Class definitions The dictionary window is implemented in a class called 
DICTIONARY_WINDOW Here's its definition: 

class EXPORT DICTI0NARY_WIND0W : public UIW_WINDOW 
{ 
public: 

DICTI0NARY_WIND0W(char *dictionaryName); 

~DICTIONARY_WINDOW(void); 

EVENT_TYPE Event(const UI_EVENT Sevent); 

private: 
DICTIONARY dictionary; UIW_STRING*inputField; UIW_TEXT*definitionField;UIW_STRING *antonymField; 
UIW_STRING *synonymField; 
static EVENT_TYPE ButtonFunction(UI_WIND0W_0BJECT *item, 

UI_EVENT &event, EVENT_TYPE ccode); 
}; 

DICTIONARY_WINDOW contains the input, definition, antonym, and 
synonym fields, as well as the lookup, save, and delete buttons. This class 
uses private member variables, accessible only to itself. They are: 

• dictionary, the pointer to the dictionary itself. The dictionary is created in 
the constructor for DICTIONARY_WINDOW 

• inputField, a pointer to the UIW_STRING field. Collects input from the 
user. 

• definitionField, a pointer to the UIW_TEXT field. Displays the defini-
tion of the input word. 

• antonymField, a pointer to the UIW_STRING field. Displays antonyms 
of the input word. 

• synonymField, a pointer to the UIW_STRING field. Displays synonyms 
for the input word. 

166 Getting Started with OpenZinc Programming 



It also includes a static user function, ButtonFunction(), that is called when 
the button is selected. It accepts the following parameters: 

• object, an object of class UI_WINDOW_OBJECT, 

• event, a structure of type UI_EVENT, and 

• ccode, the event type. 

The D_ENTRY is the entry in the data file that contains the data we enter in 
DICTIONARY_WINDOW 's fields. Here's the definition for the 
D_ENTRY class: 

class D_ENTRY { 

public: 
int wasLoaded; 

char *word; 

char definition; 

char *antonym; 

char * synonym; 
D_ENTRY(const char *name, ZIL_STORAGE *file, 

UIS_FLAGS sFlags = UIS_READ); 

~D_ENTRY(); 
static D_ENTRY *New(const char *name, ZIL_STORAGE *file, 

UIS_FLAGS sFlags = UIS_READ); 

void Save(); 

private: 
ZIL_STORAGE_OBJECT *object; 

}; 
D_ENTRY uses the following member variables: 

• wasLoaded, a flag that denotes whether or not the entry was loaded. 

• word, a string that contains the entry in the dictionary. 

• definition, a string that contains the definition string for the word. 

• antonym, a list of antonyms that apply to the dictionary entry. 

• synonym, a list of synonyms that apply to the dictionary entry. 
DICTIONARY derives from ZILjSTORAGE, which contains methods for 
saving and loading data to and from a data file. 
DICTIONARY has the following parameter: 
• name, which is the name of the .DAT file being used as the dictionary 

data file. 

Getting Started with OpenZinc Programming 167 



The OpenZinc Data File 

Creating the user interface 

Using the 
Designer to 
create the 
window 

The first thing we'll do is use OpenZinc Designer to recreate the main window 
and save it in the file WORD_WIN.DAT. Follow these steps: 

1. First, create a new file in the Designer. Select File I New, and then type 
WORD_WIN.DAT for the filename. Click the OK button to create the 
file. 

2. Then create a new window by selecting Window I Create. Select the 
string object icon, located at the upper left of the Designer tool bar. Then 
drag and drop four string fields on the window. 

The Designer gives each string field a default string ID of the form 
FIELD_1, FIELD_2, and so forth. In order to access a particular field 
programmatically, we need to specify that string's ID. But the defaults 
don't help us remember which field is which, so let's change the string 
IDs to something we can remember. 

3. To change each string ID, bring up one at a time the edit window of each 
string field by double-clicking on the background of the window. Select 
the notebook tab called Sub-Objects, which will bring up a vertical list 
of all the subobjects in the window. Find the ones marked FIELD_1, 
FIELD_2, and so forth. In the vertical list, double-click on the first one, 
and a new window will pop up that contains several fields for informa-
tion related to that subobject. Enter the appropriate string ID in each 
Name field—use DCT_INPUT for the first one, then change the string 
IDs of the other fields to DCT_DEFINITION, DCT_ANTONYM, and 
DCT_SYNONYM. 

4. Create some buttons and change the string IDs of our buttons. To change 
the Lookup button's stringID, double-click on the window's background, 
click on the Sub-Objects notebook tab, and select the first button in the 
list. Enter DCT_LOOKUP_BUTTON in the Name field. Likewise, 
change the Save button's string ID to DCT_SAVE_BUTTON, and the 
Delete's button to DCT_DELETE_BUTTON. 

168 Getting Started with OpenZinc Programming 



DICTIONARY_WINDOW 

Wiring up the 
interface 

Now that we've set up the window, the next step is to "wire up" the interface 
so that we can get data in and out of the fields and cause each button to call 
the static user function. We do this in the implementation of 
DICTIONARY_WINDOW by setting up pointers to the string fields so we 
can access their contents programmatically, and by assigning each button the 
same static user function. 

Here's how we wire up the interface. 

1. First, we create a pointer to each string field. Then we call the window's 
Information() function with the I_GET_STRINGID_OBJECT request 
that tells the Information() function to return a pointer to the object 
whose stringID matches the stringID passed in the second parameter of 
the Information() function call. We also use the string ID of each field 
so the Information() function knows from which field to get the text. 

// Set up the pointers to the window fields. 

inputField = (UIW_STRING *)Information(I_GET_STRINGID_OBJECT, 
"DCT_INPUT"); 

definitionField = (UIW_TEXT *)Information(I_GET_STRINGID_OBJECT, 
"DCT_DEFINITION"); 

antonymField = (UIW_STRING *) Information (I_GET_STRINGID__OB JECT, 
"DCT_ANTONYM"); 

synonymField = (UIW_STRING *)Information(I_GET_STRINGID_OBJECT, 
"DCT_SYNONYM"); 

The next thing is to connect the buttons to the static user function. 
2. Create a pointer to a button. 
3. Then call the window's Get ( ) function with the nwnberlD assigned to 

the Lookup button, which is DCT_LOOKUP_BUTTON. The Get ( ) 
function will return a pointer to a UIW_BUTTON object. 

// Set the user functions to the buttons. 

UIW_BUTT0N *button; 
button = (UIW_BUTTON *)Get(DCT_LOOKUP_BUTTON); 

button->userFunction = DICTIONARY_WINDOW::ButtonFunction; 

button = (UIW_BUTTON *)Get(DCT_SAVE_BUTTON); 

button->userFunction = DICTIONARY_WINDOW::ButtonFunction; 

button = (UIW_BUTTON *)Get(DCT_DELETE_BUTTON); 

button->userFunction = DICTIONARY WINDOW::ButtonFunction; 

The Event() 
function 

The Event() function is where all the action takes place in our tutorial. It 
traps the events generated when the user selects a button and performs the 
appropriate action. 

Getting Started with OpenZinc Programming 1 6 9 



The OpenZinc Data File 

The D_ENTRY class 
The dictionary entry is an instance of the D_ENTRY class, which encapsu-
lates the data in the dictionary and provides methods for creating a new entry 
and saving an existing entry to a file. 

The D_ENTRY class contains a private member variable called object, of 
type ZIL_STORAGE_OBJECT that can be stored in the data file. We'll 
use it in conjunction with DICTIONARY, which derives from 
ZIL_STORAGE, to load and store data in the file. 

Although D_ENTRY contains a ZIL_STORAGE_OBJECT member vari-
able, we must set up two functions in order for it to access the data file. 
These functions are New() and Save(). 

The constructor for the D_ENTRY class takes the following three parame-
ters: 

name, the name of the storage object. 

file, the file containing the object. If the object is not found in the file, the 
member wasLoaded is set to FALSE. Otherwise, wasLoaded is set to FRUE 
and the constructor retrieves the object from the data file. 

flags, which indicates whether the object is to be loaded or created. If the 
program finds the entry, and if we set the UISjCREATE flag, it will delete 
the existing entry so the program can save the new entry. 

When the program finds an existing entry in the data file, it loads the word, 
its definition, its antonyms, and its synonyms. 

When the program looks up a word in the dictionary and reads in the entry 
from the data file, it calls the function DJENTRY: :New(), which creates a 
new object. (New() is a static member function of D_ENTRY, not the new 
operator of C++.) The reason for having a static New() function is so the 
function can return a value indicating if the object was created successfully 
or not. 

The purpose of the Save() function is to save the object into a file. The fol-
lowing listing shows how the function stores the words: 

void D_ENTRY::Save(void) 
{ 

// Store the field information. 

1 7 0 Getting Started with OpenZinc Programming 

ZIL_STORAGE_ 
OBJECT 

The constructor 

The New 
function 

The Save 
function 



object->Store(word); 
object->Store(definition); 

object->Store(antonym); 
object->Store(synonym); 
} 

When Save() is called, object->Store() writes the data to storage. UI_-
STORAGE actually writes the data to a temporary file and not to the actual 
data file; that work is done in UI_STORAGE::Save(), found in the destruc-
tor for the DICTIONARY class. The destructor is called after the user sends 
us the "quit" event, and the Control() function returns control to us. 

The DICTIONARY class 
The dictionary class handles the tasks of saving and loading the data to and 
from the data file. To do so, DICTIONARY derives from ZIL_STORAGE, 
which reads and writes OpenZinc data files. 

We can think of ZIL_STORAGE, and therefore DICTIONARY as well, as 
a file system that can change directories, make new directories, and add and 
delete resources. The main difference between a ZIL_STORAGE class and 
a regular file system is that ZIL_STORAGE lets us save and retrieve persis-
tent objects as well as items or objects of different types. 

DICTIONARY doesn't actually save the data file when we press the Save 
button; as we learned previously, instead it caches it in a temporary file until 
the program falls through the Control() function. Then the destructor saves 
the data file using the Save() function it inherited from ZIL_STORAGE. 
Using the Save() function is easy. We gave the function the name of the file 
to save in the constructor when we loaded the .DAT file; therefore we only 
need to call the function with the parameter 1. This tells the function to save 
the data file. 

Getting Started with OpenZinc Programming 171 



The OpenZinc Data File 

Conclusion 

In this chapter, we learned how to use the OpenZinc data file, and how to add 
objects to it. This chapter also gave us some more practice on how to use 
windows created in the Designer, and how to connect code to an interface. In 
the next chapter, we'll learn how to extend an existing OpenZinc object with new 
functionality. 

172 Getting Started with OpenZinc Programming 

\ 



Virtual List 

D i s p l a y i n g records from a database is a common programming task, 
often complicated by the fact that the database may have many more records 
than can fit in memory at once. So, to display many records a virtual list is 
needed. A virtual list does not attempt to load all the records at once. Instead, 
it only loads those that are visible at any given time. In this chapter we will 
learn how to use a OpenZinc object, UIW_TABLE, to create a virtual list. 

Getting Started with OpenZinc Programming 1 7 3 

Chapter 14 



Virtual List 

What we'11 do 
Here are the steps we'll take in writing VLIST.CPP. 

1. Create a UIW_TABLE. The UIW_TABLE class has built in virtual 
capability, so no new functionality is required on our part. 

2. Create the UIW_TABLE_HEADERs that are used to label the columns 
and the rows. 

3. Create the UIW_TABLE_RECORDs that are used to display the infor-
mation in the headers and in the table. Add all fields to the table records. 

4. Create the user functions that the table records will call when they need 
to update their data. 

Running the Compile the source code and run the executable. You should see the follow-
p r o g r a m ing window on the screen: 

The table is a nonfield region so it occupies the entire window. The table has 
three headers: a column header that contains a label identifying the defini-
tion column; a corner header that contains a label identifying the word col-
umn; and the row header, which contains the words. The definitions appear 
as records in the table. Each definition record contains a multi-line text 
object. 

All movement is handled by the table. We can scroll the table up and down 
using either the scroll bar or the keyboard. Table keystrokes are native to 
each environment, but typically are the equivalent of <Ctrl+Up Arrow> and 
<Ctrl+Down Arrow>. 

174 Getting Started with OpenZinc Programming 



The application retrieves the necessary data from disk whenever a new 
record scrolls into view. 

All fields in this tutorial are view only, so you won't be able to edit any 
information. 

Source code • VLIST.CPP Contains all the source code for the virtual list. This 
includes the following functions.. 
LoadRecord() 

RecordFunction()RowHeaderFunction() 
UI_APPLICATION::Main() 

• VLIST.TXT. Contains 100 records that are dynamically read from disk 
when needed by the virtual list. 

• *.DEF, *.RC. The environment specific definition and resource files 
required when compiling for environments OpenZinc supports. 

• *.MAK. The compiler-dependent makefiles used to build VLIST.CPP. 

Analyzing the The first section in the source file, VLIST.CPP, contains some pre-compiler 
Source code variable definitions and some global variable declarations. 

RECORD_LENGTH is the length of each record in the data file. In our appli-
cation we are using fixed-length records. RECORD_LENGTH is different 
across environments due to how each environment handles the end-of-line 
character. 

file is the file handle of the data file, VLIST.TXT. 

maxRecords is the number of records in the data file. 
The next section of the source file contains the definitions of the support 
functions used in our application. The LoadRecord() function loads a 
record from the data file. It takes three parameters. The first parameter is the 
record number to load. The second parameter is a text buffer where the func-
tion is to place the word. The third parameter is a text buffer where the func-
tion is to place the definition. 

RecordFunction() is a user function associated with the 
UIW_TABLE_RECORD used to display the definitions. This function is 
called by the UIW_TABLE_RECORD just as any user function is, when 
the object becomes current, is selected, or becomes noncurrent. In addition 

Getting Started with OpenZinc Programming 175 



Virtual List 

176 Getting Started with OpenZinc Programming 



This is where we set up the application by opening the data file, creating the 
window, the table, and all the subobjects of the table, and processing the user 
events. 

Program flow When the application starts, it creates a window, places a table on the win-
dow, and adds the window to the Window Manager. As the table is display-
ing a record for the first time—for example, when the table is first coming 
up or as a new record is scrolled into view—the table record's user function 
is called to load the data. All events are handled by the table and its subob-
jects. 

Using the UIW_TABLE object 
In keeping with the philosophy of OpenZinc, the UIW_TABLE object offers us a 
good deal of flexibility—a record can consist of a single field, as it does in 
this application, or it can be made up of many different fields. The table can 
have a single column, or it can be made up of dozens of columns, as a 
spreadsheet might be. The table can handle memory allocation for you, or 
you can take care of it yourself. 

Along with all this flexibility, however, comes a certain amount of complex-
ity. So we're going to devote the rest of this chapter to a discussion of the 
basics of using the UIW_TABLE. 

Table Structure When we break it down, we find that a table consists of records of data and 
some labels identifying each field in the data records. The 
UIW_TABLE_RECORD class displays records, and the UIW_TABLE_-

Getting Started with OpenZinc Programming 1 7 7 



Virtual List 

HEADER class displays the column and row labels. All data manipulation 
is handled at the table record level. And lastly, standard OpenZinc window objects 
comprise data and label fields. Here's a representation of a table object: 

The table record A table record, similar to a window, is simply a collection of fields that are in 
some way related. In fact, the UIW_TABLE_RECORD class derives from 
UIW_WINDOW, and we create and add fields to the table record just as 
would add window objects to a window. When creating a table record we 
specify its height and width and associate a user function with it. We will 
talk about the user function later when we discuss how we get data into a 
record. 

The table header The table header is like a small table that appears in a special area of the 
table. Instead of being used to input and output data, though, the header only 
displays information, usually describing the contents of the column or row 

178 Getting Started with OpenZinc Programming 



with which it is associated. The header appears down the left edge of the 
table, in the upper-left corner of the table, or across the top of the table, 
depending on the table header's flag setting. Often, several fields are needed 
in a header, typically because the data being described by the header consists 
of several fields. For this reason, we add each label field to a table record and 
add the table record to the header. The table header is, in turn, added to the 
table. Our application only uses one field in the header, but we can see this 
hierarchy of additions in the code: 

Adding records You may have noticed that only one UIW_TABLE_RECORD was added to 
to the list the table and to each of the table headers. 

Adding fields to Each field of data, whether it is a label on a header or a part of a data record, 
the records is created using a window object. If we place the object in a header, using a 

UIW_PROMPT is usually sufficient, since this data can never be edited. 
The fields in a data record, however, will often both display information and 
collect information from the user. These fields can be just about any window 
object. 

Getting Started with OpenZinc Programming 1 7 9 

If the dictionary we displayed in our application has 100 records, and if there 
were typically 5 or more records displayed at any given time, how did the 
one record become 100? The answer lies in one of the most useful features 
of the table object, its built-in virtual capability. We only add one record, but 
the table makes it look as if there are many records. The details of how it 
does this are not relevant to our discussion, but in a nutshell it makes a copy 
of the record we add and then uses that copy to draw images of all the 
records except the current one. 



Virtual List 

To set the fields in a record, simply create them and add them to the table 
record just as you would add them to a window. Their size and position 
parameters are used to place the object within the region of the table record, 
and their other flag settings will affect their operation and appearance. Let's 
look at our definition record: 

+ &(*new UIW_TABLE_RECORD(37, 2, RecordFunction) 
+ (definition = new UIW__TEXT(1, 0, 35, 2, "", 80, 

WNF_NO_FLAGS, WOF_VIEW_ONLY))); 

The definition record only contains a UIW_TEXT object. We can see from 
the parameters that it is placed one cell from the left of the table record, is 35 
cells wide and two cells tall. It has a maximum length of 80 characters, is 
view only, and has no border. 

If we look at the header used to label the definition record we will see how 
the two are related: 

*colHeader 
+ &(*new UIW_TABLE_RECORD(37, 1) 

+ new UIW_PR0MPT(1, 0, "Definition")); 

The label is created using a UIW_PROMPT that is placed one cell from the 
left of the table record, so it aligns with the text of the definition field. 

Getting the data So, if most of the data we see is actually only an image of the fields, and if 
into the fields we only add one table record to the table or header, how does the data get 

there? 

There are several ways to place data into the table. One way is to pass the 
data in to the UIW_TABLE constructor. This, of course, won't work if there 
is more data than can fit in memory at one time. This also only provides data 
for the data in the table, but not for the headers. We wanted all of our data to 
come from the data file so we didn't give the table any memory and we set 
its WOF_NO__ALLOCATE_DATA flag so that it would not attempt to allo-
cate memory for our data. We can see this in the call to the UIW_TABLE 
constructor: 

UIW_TABLE *table = new UIW_TABLE(1, 1, 40, 10, 1, 0, 100, 
ZIL_NULLP(void), 100, TBLF_NO_FLAGS, WOF_NON_FIELD_REGION | 
WOF_NO_ALLOCATE_DATA); 

If we wanted to initialize some data at the beginning, we could have passed 
in a data block—for example, an array of structures, each containing data for 
a single record—and indicated how many records of data that block con-
tained. 

180 Getting Started with OpenZinc Programming 



Another way to get data into the records is by using user functions with the 
table records. This is the method we used in VLIST. Whenever a table 
record needs to have its data set, it calls the user function. Let's look at the 
definition field's user function, RecordFunction(): 

EVENT_TYPE RecordFunction(UI_WINDOW_OBJECT *object, 
UI_EVENT &event, EVENT_TYPE ccode) 

{ 
if (ccode == S_SET_DATA) 
{ 

ZIL_ICHAR definition[80]; 
LoadRecord(event.rawCode, ZIL_NULLP(ZIL_ICHAR), definition); 
object->Get("DEFINITION")-information (I_SET_TEXT, 

definition); 
} 
return (ccode); 

} 

As we mentioned earlier, in addition to the usual times that a user function is 
called, a user function associated with a table record is called when the table 
record needs its data set. In our user function we check to see if the ccode is 
S_SET_DATA, the message we'll get when we need to set the record's data. 
If it is, we call LoadRecord() to load the record from disk. The record num-
ber is passed in event. rawCode. If the table record had any memory allocated 
for its data—VLIST does not, since we neither passed any to the table con-
structor, nor set the WOF_NO_ALLOCATE_DATA flag for the table—the 
pointer to this data would be passed in event.data. After we get the definition 
back from LoadRecord() we get a pointer to the text object in the table 
record that displays the definition and set its data with our definition. And 
the table takes care of the rest. If we wanted to, we could use this user func-
tion to save data whenever the object was becoming noncurrent or perform 
some other action if the object is selected. 

A third way of updating a record's data is similar to using the user function. 
Instead of the user function, however, we could derive our own table record 
class and trap the S_SET_DATA event in its Event() function. 

Getting Started with OpenZinc Programming 181 



Virtual List 

Conclusion 

N ow that we've learned how to write a virtual list and how to use event 
map tables, we'll learn about deriving our own custom device classes. This 
will give us the ability to write programs that respond to user input in ways 
we can define. 

182 Getting Started with OpenZinc Programming 



Deriving a Device 

In this chapter, we'll learn how to derive our own device. We'll create a 
macro device that will watch the events flowing through the system to see if 
the user presses certain macro keys. If the user does press a macro key, the 
device will enter some text into a text object. 

Getting Started with OpenZinc Programming 183 

Chapter 15 



Deriving a Device 

What we'll do 

Source code The source code for this program is located in the \OpenZinc\TUTOR\MACRO 
subdirectory, and contains the following files: 

• MACRO.CPP This file contains the macro device member functions 
MACRO_HANDLER: :Event() and MACRO_HANDLER::Poll(), 
as well as the main program loop inside UI_APPLICATION::Main(). 

• *.DEF, *.RC. The environment specific definition and resource files. 

• * MAK. The compiler-dependent makefiles. See "Appendix A—Com-
piler Considerations" for information on compiling for each OpenZinc-sup-
ported platform. 

Program Let's begin by looking at how the keyboard macro works. To do this, com-
execution pile and run the application MACRO.EXE. The following window should 

appear on the screen: 

The current object in the window is a text object, which, in this case, is a 
nonfield region that takes up the entire region within the window. In addition 
to a text object, this program has four macro keys. 

TABLE 12. Macro keys and their function 

Keys Function 

<F5> Enters the text "Macro #1." into the text window. 

<F6> Enters the text "Macro #2." into the text window. 

<F7> Enters the text "Macro #3." into the text window. 

<F8> Enters the text "Macro #4." into the text window. 

1 8 4 Getting Started with OpenZinc Programming 



Class definit ions The macro device is implemented in a class called MACRO_HANDLER. 
Here's its definition: 

const EVENT_TYPE E_MACRO = 89; 
struct MACRO_PAIR { 

RAW_CODE rawCode; 
char *macro; 

}; 
class MACR0_HANDLER : public UI_DEVICE { 
public: 

MACR0_HANDLER (MACRO_PAIR *macroTable) ; 
EVENT_TYPE Event(const UI_EVENT &event); 

private: 
MACR0_PAIR *macroTable; 

MACR0_PAIR *currentMacro; 

int offset; 
void Poll(void); 

}; 
MACRO_HANDLER uses the following definitions and member vari-
ables: 
• E_MACRO, a constant value that uniquely identifies the macro device. 

OpenZinc predefines the values for the keyboard, mouse, and cursor devices, 
but leaves other values open for input devices that we design ourselves. 
We'll discuss later in this chapter the significance of the value 89. 

• MACRO__PAIR, a structure that allows us to define a keyboard/macro 
equivalent pair. Below is the definition of the four macro keys we will 
use in our sample program: 

MACRO_PAIR macroTable[] = { 

{ F5, "Macro #1." }, 
{ F6, "Macro #2," }, 
{ F7, "Macro #3." }, 
{ F8, "Macro #4." }, 
{ 0, NULL } 

}; 

Getting Started with OpenZinc Programming 185 



Deriving a Device 

The entry { 0, NULL } is an end-of-array indicator. In addition, F5, F6, 
F7 and F8 in the array above requires us to define a constant value called 
USE_RAW_KEYS. This definition allows us to have access to the raw 
scan codes defined in UI_MAP.HPP. 

• macroTable, a pointer to the table that contains the rawCode/macro pairs 
to be matched. 

• currentMacro, a pointer to the current, or active, macro. This value is 
reset whenever a new macro key is pressed. 

• offset, a value that gives the position within the currentMacro->macro 
character array. We use this when the macro device places a keyboard 
event into the Event Manager's event queue. 

Program f low The code sample and the corresponding steps show how the macro device 
works after we attach it to the Event Manager. 

1. When the programmer calls eventManager->Get(), it calls the device's 
Pol l ( ) function. The first thing the Pol l ( ) function does is get the next 
event waiting to be processed from the event queue so it can determine if 
it is a macro key. The code for this step is shown below. 

void MACRO_HANDLER::Poll(void) { 

// See if any events are in the event manager's event queue. 
UI_EVENT event; 
static int emptyQueue = TRUE; 

if (emptyQueue) 
emptyQueue = eventManager->Get(event, 

Q_NO_POLL | Q_N0_BL0CK | Q_NO_DESTROY | Q_BEGIN); 

When calling eventManager->Get(), we need to ensure we don't disrupt 
normal event handling; we do this by calling G e t ( ) with four parameters, 
Q_NO_POLL, Q_NO_BLOCK, Q_NO_DESTRO Y and Q_BEGIN. 

The Q_NO_POLL flag prevents the Event Manager from polling any 
other input devices. Since we are receiving user input while in a function 
of an input device, we must be careful to not poll input devices, causing 
unwanted recursion. 

The Q_NO_BLOCK flag protects against stopping program execution 
until an event is detected. We set this since we only want to check the 
event queue to see if an event is available. If there is an event in the 
queue, the function returns a value of 0. Otherwise, it returns a negative 
value. 

1 8 6 Getting Started with OpenZinc Programming 



The Q__NO_DESTROY flag prevents the Get() function from destroying 
the contents of the queue merely by looking for special keyboard events. 
This flag allows us to examine the events without removing them from 
the queue. 

Q_BEGIN lets our function get events from the beginning, rather than the 
end, of the queue. 

2. The second step is to check for events specific to a particular environ-
ment. If our program receives these types of events, they are mapped to 
the generic OpenZinc event format for processing. Here's an example of how 
our program maps events for some operating systems. 

// Check for environment-specific keyboard events. 
#if defined (ZIL_MSWINDOWS) 

if (state = D_OFF && !emptyQueue && event.type = E_MSWINDCWS && 
event.message.message == WM_KEYDOWN) 

{ 

#elif defined (ZIL_0S2) 
if (!emptyQueue && event.type == E_0S2 && 

event.message.msg == WM_CHAR) 
{ 

#elif defined (ZIL_MOTIF) 
if (!emptyQueue && event.type == E_MOTIF && 

event.message.type == KeyPress) 
{ 

#endif 
} 

3. This step determines if a macro key was pressed, and if so, which one. 
The program only executes this step if the device is not already process-
ing a macro key. If the user has pressed a valid macro key, the program 
shuts off all other input devices, so they won't feed more information into 
the queue while we are putting into the queue our macro events. 

Next, the original macro key is removed from the Event Manager's event 
queue and the macro device is enabled. 

4. The program only executes the fourth step if the macro device is enabled. 
Once the macro device is enabled, it feeds one event into the event queue 
each time its Poll() routine is called, but only if there are no other events 
waiting to be processed by the Event Manager. Once the macro device 

Getting Started with OpenZinc Programming 187 



Deriving a Device 

runs out of input information, it changes its state to D_OFF. This pre-
vents the fourth step from being executed until another macro key is 
pressed. 

// Put macro information into the event queue. 
if (state == D_ON && emptyQueue) 
{ 

} 
5. The main program loop processes all event information, including the 

macro key expansions, by calling windowManager->Event(). The main 
program loop exits if the L_EXIT message is received, or it returns to the 
first step to get the next event. 

The MACRO_HANDLER class constructor is an inline function. 

class MACRO_HANDLER : public UI_DEVICE { 

public: 
MACRO_HANDLER(MACRO_PAIR * macroTable) : UI_DEVICE(E_MACRO, D_OFF), 

macroTable(_macroTable) { installed = TRUE; } 

We call UI_DEVICE's class constructor before any we set any class-spe-
cific information. It requires the specification of the device's type, 
E_MACRO, and its initial state, D_OFF. 

The Event Manager uses the input device type to determine the device's 
order in the list. Input devices are arranged in the device list in ascending 
type order. The order of the four input devices we attached to the Event Man-
ager is: 

• UID_KEYBOARD. Its value is 10, the number associated with the con-
stant variable E_KEY. 

• UID_MOUSE. Its value is 30, the number associated with the constant 
variable E_MOUSE. 

• UID_CURSOR. Its value is 50, the number associated with the constant 
variable E_CURSOR. 

• MACRO_HANDLER. We assigned it the value 89, so that it would be 
the last device in the list. 

Here's why the macro handler should be the last device in the list. Its Poll() 
function must review any activity since the last call to 
eventManager->Get(). 

Base class 
initialization 

1 8 8 Getting Started with OpenZinc Programming 



For example, if the user presses <F5>, the keyboard's Poll() function will 
put the character <F5> into the Event Manager's event queue. 

Later, the macro device's Poll() function will be called. When it is, the 
macro handler will find the <F5> value entered by the keyboard. 

If we assign the macro handler a lower number than that assigned to the key-
board, the macro handler will always check the event queue before the key-
board feeds its information and will never see the <F5> key, and it will be 
passed to the main control before the macro handler is called again. 

The initial state of the macro device needs to be off so that the program 
doesn't think macro information is being fed into the event queue. The Event 
Manager does not look at the state of devices, but devices generally use the 
information internally to determine what types of operations to perform. The 
macro device can be either on or off. 

1. D_OFF. When the macro device is not placing events into the event 
queue, it sets itself to this state. 

2. D_ON. When the macro device places events into the event queue, it sets 
itself to this state. 

The Event Manager and UI_DEVICE set three other variables: 

enabled, a second-level state indicator. UI_DEVICE sets this variable to be 
TRUE, but the macro device ignores it. 

display, a pointer to the screen display created in the main event loop. Not 
set until the macro device is attached to the Event Manager. The macro 
device does not use display. 

eventManager, a pointer to the Event Manager where the macro device is 
attached. The macro device uses this pointer to make queries on and place 
events in the event queue. 

Initializing The class member macroTable is initialized to point to the constructor argu-
member ment _macroTable. This variable is the search table for keyboard/macro 
variables expansions. The array specified in this argument must not be destroyed until 

the class is destroyed by the Event Manager. 

The last thing the class constructor does is override the base class member 
installed. The value specified is TRUE. This value is not used by the Event 
Manager, but it does provide consistency when checking for device installa-
tion. 

Getting Started with OpenZinc Programming 189 



Deriving a Device 

The class members currentMacro and offset are not set until the state of the 
device changes to D_ON. 

The Poll function We mentioned MACRO_HANDLER::Poll() function earlier in this chap-
ter. Poll() functions do the following: 

1. Feed information to or get information from the Event Manager's event 
queue. The keyboard, mouse, cursor, and timer devices all have poll rou-
tines that feed information into the event queue. 

2. Pass control to an object periodically. Some environments OpenZinc supports 
don't multitask, and so using a poll routine in those environments ensures 
the program will poll all devices each time it calls the eventManager-> 
Get() function. The cursor device uses a poll routine to paint and remove 
an XOR region to the screen, simulating a blinking cursor. It does this by 
keeping track of time intervals and blinking the cursor at regular inter-
vals. 

"How do I install hotkeys?" 
Any prompt or selectable object such as a button or menu item 
can have a hot key. If the object is attached to a window added to 
the window manager, all you need to do is place the '&' before the 
desired hotkey in the object's text. If you want the object to 
respond to special characters, such as '#,' you may need to copy 
the library's hotKeyMapTable and add entries for the special char-
acters. The library's hotKeyMapTable is defined in G_WIN.CPP. 

If you want to place the hot key object in a group, list, or child win-
dow, pass HOT_KEY_SUB_WINDOW to the parent object's 
HotKey( ) function. This tells the parent window to search its sub-
objects for a match on the hot key. For more details, see 
Ul_WINDOW_0BJECT::HotKey() in the Programmer's Refer-
ence, Volume 1. 

The macro device feeds information to and gets information from the Event 
Manager. When the device is on, it feeds information into the event queue 
and checks the input when it is off. 

190 Getting Started with OpenZinc Programming 



Responding to 
events 

The MACRO_HANDLER::Event() function is defined below: 

class MACR0_HANDLER : public UI_DEVICE 
{ 
public: 

EVENT_TYPE Event(const UI_EVENT &event); 

This routine must be declared by the macro device since the base 
UI_DEVICE declares it a virtual function. 

class UI_DEVICE : public UI_ELEMENT 
{ 
public: 
virtual EVENT_TYPE Event(const UI_EVENT &event) = 0; 

Generally, we use Event() functions to change the state of an input device. 

Enhancements Now that we have discussed the design and implementation of a macro 
device, let's look at some variations we could implement to make the class 
more powerful. 

1. Stuff the input buffer all at once, rather than one character at a time. This 
could be accomplished by modifying the Poll() routine to put all macro 
characters into the event queue in one step. The benefits of this method 
are that it simplifies the process of the macro device and that it prevents 
the need for disabling all other input devices. The problem with this 
implementation is twofold. 

First, the macro may fill the input buffer, in which case we will have to 
write code to wait until the buffer is not full. Second, the macro may 
itself contain a character that is a macro key. This would require modifi-
cation to our member variables and may cause recursion of macro events. 

2. Modify the static variables UIW_STRING::pasteBuffer and UIW_STRING::pasteLength to contain the macro, then send an L_PASTE 
message through the system. This implementation's only drawbacks 
would be wiping out the old information in the global paste buffer and 
that the receiving object may not be a simple text field, like the window 
created in our application. 

3. Extend the macro device to enable the addition or deletion of macro 
pairs. This could be accomplished by overloading the + and - operators 
for the MACRO_HANDLER class. 

4. Extend the macro pair to handle logical, system, or normal keyboard 
information. In this implementation, we would modify the definition of 
MACRO_PAIR..macro to support UI_EVENT information, rather than 

Getting Started with OpenZinc Programming 191 



Deriving a Device 

simple character values. In addition, we would probably want to write an 
editor so that the macro could be edited and modified easily. This would 
require setting up an edit window using the UIW_WINDOW class that 
contained the macro key, a list of mapping events, and menu items or but-
tons that would let us add to, delete from, or modify the contents of the 
list. 

Conclusion 

N ow that we've learned how the keyboard macro device works, we'll 
learn to derive our own custom display classes. This will give us the ability 
to write displays built around third-party graphics libraries and will teach us 
more about the display class. 

1 9 2 Getting Started with OpenZinc Programming 



Chapter 16 Customized Displays 

In order to display information on the screen under each of the operating 
environments OpenZinc supports, we use a display object to handle drawing 
chores. Writing display classes from scratch would consume a great amount 
of time, so OpenZinc designed UI_DISPLAY, which is an abstract class that 
describes basic behaviors of drawing but leaves the implementation up to us. 
Here we will use UI_DISPLAY to derive a display class for a specific 
graphics library, UI_BGI_DISPLAY. 

Getting Started with OpenZinc Programming 193 



Customized Displays 

What we'll do 
All display classes derive from UI_DISPLAY, which handles the details of 
the display. But UI_DISPLAY doesn't automatically know what those 
details are; we need to define those behaviors in our derived display, 
UI_BGI_DISPLAY. To tell UI_DISPLAY about those details, we must take 
three steps. 

1. Decide which virtual functions contained in UI_DISPLAY we'll imple-
ment in our derived display, UI_BGI_DISPLAY. 

2. Determine the coordinate system. This depends on whether the display is 
running in text or graphics modes. The coordinate system is always left-
top, zero-based, where {0,0} is the coordinate of the left-top corner of the 
screen, and where the type of display and the mode in which it is running 
determines the right-bottom coordinates. 

3. Define clip regions, or identifying rectangular regions of the screen 
where windows overlap. For example, if two windows were attached to 
the screen, the display would contain several rectangular regions with 
different identifications. Most environments handle drawing routines as 
well as clipping. 

Using the class A display class defines some methods for drawing on the screen. We begin 
defining those methods by deciding basic properties of the screen like the 
types of fonts, the number of columns and lines, and whether the display is 
color or monochrome. Then we declare the behaviors we want our display 
class to use, behaviors like starting up the display, and others like drawing 
lines, polygons, or rectangles. 

Source code The source code for this example is located in \OpenZinc\TUTOR\DISPLAY, 
and contains: 

• TEST.CPP, a test program. 

• BORLAND.MAK, the makefile associated with the test program. 

• D_BGIDSP.CPP, located in \OpenZinc\SOURCE, contains the BGI class 
constructor, destructor, and associated display member functions. 

To derive the UI_BGI_DISPLAY class, we need the graphics display 
library GRAPHICS.LIB, and its BGI files, EGAVGA.BGI, CGA.BGE and 
HERC.BGI, provided with the Borland compiler. Even if we're not using 

194 Getting Started with OpenZinc Programming 



the Borland compiler, or even if we won't derive our own display later on, 
we can still learn the design and implementation of display classes by study-
ing this chapter. 

Besides setting up information needed for working with screens, 
UI_DISPLAY initializes the following member variables: 

• installed, which tells whether the display has been installed. By default, 
UI_DISPLAY sets it to FALSE. We need to tell our derived display con-
structor to set this variable to be TRUE if the graphics display installs 
correctly. 

• isMono, which tells whether the display is operating in monochrome 
mode. 

• cellWidth and cellHeight, the width and height values of a cell coordi-
nate. If the program is running in text mode, cellWidth and cellHeight are 
1. Otherwise, the values of cellWidth and cell Height are determined by 
the graphics mode and default font size. For example, the 
UI_BGI_DISPLAY class constructor sets cellWidth to 7 and cellHeight 
to 23. 

• columns and lines, the columns or lines the display contains. The follow-
ing table shows BGI's values for columns and lines: 

TABLE 13. B G I display values 

preSpace denotes the size in pixels of the white space between the top 
border of a string field and the tallest character. By default, preSpace is 
set to 2. 

postSpace denotes the size in pixels of the white space between the bot-
tom border of a string field and the lowest character. By default, 
postSpace is set to 2. 

Getting Started with OpenZinc Programming 1 9 5 



Customized Displays 

miniNumeratorX and miniDenominatorX determine the width of a mini-
cell. miniNumeratorX is set to 1 and miniDenominatorX is set to 10. 
These values default to 1/10th of a cellwidth. Mini-cells provide for more 
precise positioning of objects and are available in graphics modes only. 

miniNumeratorY and miniDenominatorY determine the height of a mini-
cell. miniNumeratorY is set to 1 and miniDenominatorY is set to 10. 
These values default to 1/10th of a cellheight. Mini-cells provide for 
more precise positioning of objects and are available in graphics modes 
only. 

backgroundPalette is a pointer to the background color palette. When ini-
tialized, this static pointer points to the UI_PALETTE structure, 
JbackgroundPalette, contained in G_DSP.CPP. 

xorPalette is a pointer to the XOR color palette. When initialized, this 
static pointer points to the UI_PALETTE structure,_xorPalette , con-
tained in G_DSP.CPP 

colorMap is a pointer to the normal color palette. When initialized, this 
static pointer points to the UI_PALETTE s tructure,_colorMap , con-
tained in G_DSP.CPP 

Writing UI_BGI_DISPLAY 

Initializing the Since our derived display uses UI_DISPLAY's methods, we must first ini-
base class tialize UI_DISPLAY before we initialize UI_BGI_DISPLAY To initialize 

it, we call inside of UI_BGI_DISPLAY the UI_DISPLAY constructor with 
three arguments, isText, _operatingSystem, and jwindoxvingSystem. 

UI_DISPLAY(FALSE, _operatingSystem, _windowingSystem) 

When we call this function, UI_DISPLAY sets up then information needed 
for working with screens. To be able to write display classes, we need not 
understand what UI_DISPLAY does—we can treat UI_DISPLAY as a 
black box. 

This black box notion is a benefit of OpenZinc and of object orientation in gen-
eral. It allows us to use the functionality of another class without having to 
understand how it works. All we need to know is how to pass parameters and 

1 9 6 Getting Started with OpenZinc Programming 



arguments into the class and let it do our work for us. If not for OpenZinc's true 
object orientation, writing our own display class would mean duplicating 
much of the work OpenZinc has already done. 

Here's where we pass parameters and arguments into UI_DISPLAY's con-
structor. isText is the first variable in the constructor, which tells whether a 
text display will be created—since we're creating a graphics display, this 
value is FALSE. We'll already know the values for the _operatingSystem and 
_windowingSystem variables before we write the class. 

Initializing After initializing UI_DISPLAY to use its methods for working with screens, 
UI_BGI_DISPLAY we have to initialize UI_BGI_DISPLAY 's member variables. Below are the 

steps UI_BGI_DISPLAY 's constructor follows to initialize them. 

1. Register the system, dialog, and small fonts contained in the .CHR files 
in \OpenZinc\SOURCE. We can modify these fonts with the Borland font 
editor, and we must compile them with the Borland utility 
BGI20BJ.EXE, which translates them to .OBJ files. Once translated, 
the fonts are linked automatically into the program. 

// Register the system, dialog and small fonts linked in. 
BGIFONT BGIFont = {0, 0, 1, 1, 1, 1, 0, 0 }; 
BGIFont.font = registerfarbgifont(SmallFont); 
if (BGIFont.font >= 0) 
{ 
BGIFont.charSize = 0; 
BGIFont.maxWidth = 10; 
BGIFont.maxHeight = 11; 
UI_BGI_DISPLAY::fontTable[FNT_SMALL_FONT] = BGIFont; 

} 
BGIFont.font = registerfarbgifont(DialogFont); 
if (BGIFont.font >= 0) 
{ 
BGIFont.charSize = 0; 
BGIFont.maxWidth = 11; 
BGIFont.maxHeight = 11; 
UI_BGI_DISPLAY::fontTable[FNT_DIALOG_FONT] = BGIFont; 

} 
BGIFont.font = registerfarbgifont(SystemFont); 
if (BGIFont.font >= 0) { 

BGIFont.charSize = 0; 
BGIFont.maxWidth = 11; 
BGIFont.maxHeight = 13; 
UI_BGI_DISPLAY::fontTable[FNT_SYSTEM_FONT] = BGIFont; 

} 

Getting Started with OpenZinc Programming 197 



Customized Displays 

2. Determine the type of display. In the Borland graphics library we can 
determine the type of display by calling detectgraph() . The driver and 
mode arguments of the constructor allow us to override this default detec-
tion. 

// Find the type of display and initialize the driver, 
if (driver == DETECT) 

detectgraph(&driver, &mode); 

int tDriver, tMode; 
3. Find the display's graphics driver. The current working directory is the 

first place we look, and the second is the originating directory of the pro-
gram. If these fail, we use the UI_PATH object to search the directories 
specified by the environment variable PATH. If the driver cannot be 
found, the installed flag remains FALSE, and we drop out of the initial-
ization process. 

// Use temporary path if not installed in main(). 
int pathlnstalled = searchPath ? TRUE : FALSE; 

if (!pathlnstalled) 
searchPath = new UI_PATH; 

const char *pathName = searchPath->FirstPathName();do 
{ 
tDriver = driver; 

tMode = mode; 
initgraph(&tDriver, &tMode,pathName); 

pathName = searchPath->NextPathName(); 

} while (tDriver == -3 && pathName); 
if (tDriver < 0) 

return; 
driver=tDriver; 
mode = tMode; 
// Delete path if it was installed temporarily. 
if (!pathlnstalled) { 

delete searchPath; 
searchPath = NULL; 

} 
4. Set up columns, lines, and maxColors variables that we discussed earlier. 

columns = getmaxx() + 1; 
lines = getmaxy() + 1; 
maxColors = getmaxcolor() + 1; 

194 Getting Started with OpenZinc Programming 



Display The class destructor for UIJBGIJDISPLAY only has to do a small amount 
destructor of work—it need only restore the display by calling c!osegraph(), which 

restores the screen. 

The Rectangle( ) function 

Drawing on the To show how to draw on the screen, let's examine the 
screen UI_BGI_DISPLAY::RectangIe() function. All drawing functions, 

Rectangle() included, work similarly—first we set up a draw region, then 
we draw inside of it. Here are the steps this function, or a rectangle function 
for any other display class, will take. 

Getting Started with OpenZinc Programming 199 

5. Set up the default font, initialize cellWidth and cellHeight, fill the back-
ground screen, and define the new display region, which is, in our case, 
the entire screen. Since the display was successfully installed, the con-
structor sets installed to TRUE. 



Customized Displays 

1. Set up the desired draw region. In our Rectangle() function, we've spec-
ified two regions. The first region is where we draw the rectangle, other-
wise called the fill region. We define this region with four coordinates: 
left, top, right, and bottom. The second region is specified by clipRegion, 
which describes where the drawing should be clipped. The clip region 
associates the screen identifications of window objects with a window. A 
window may contain several different window objects, such as buttons, 
title bar, and borders, but all the objects share the same identification, 
which ensures that one window object does not draw over another. 

The way we ensure that window objects don't draw over one another is to 
specify a clipRegion that is the trueRegion coordinates of the object that wants 
to draw to the screen. The object's trueRegion screen coordinates are contained 
in the public UI_WINDOW_OBJECT::r™e. 

// Assign the rectangle to the region structure. 
UI_REGION region, tRegion; 
if(!RegionInitialize(region, clipRegion, left, top, right, bottcm)) 

return; 
// Draw the rectangle on the display 
int changedScreen = FALSE; 

2. Identify. Determine which areas of the screen have the same identifica-
tion as that passed down by the screenID argument. To do this, our pro-
gram walks through the list of region elements and checks their 
identifications with screenID's. If the IDs match, and if the screen region 
and the region specified overlap, the program executes the third step. 

for (UI_REGION_ELEMENT *dRegion = First();dRegion;dRegion = dRegion->Next()) 

if (screenID == ID_DIRECT || (screenID == dRegion->screenID && 
dRegion->region.Overlap(region, tRegion))) 

{ 
if (screenID == ID_DIRECT) 

tRegion = region; 
if (!changedScreen) 
{ 
changedScreen = VirtualGet(screenID, region.left, 

region.top, region.right, region.bottom); 
SetPattern(palette, xor); 

} 
3. Clip. The best way would be to set up all the clip regions at once and then 

draw the image. Unfortunately, the BGI graphics library does not support 
multiple clip regions, and so we must walk through the list of regions and 

200 Getting Started with OpenZinc Programming 



display the image each time we find an overlapping region. Note that for 
operating systems that associate a handle with a window object, screenID 
is set to the window handle. 

Information The display has two information functions. TextHeight(), gets the maxi-
member mum height of a string using a specific font. If the font parameter, logical-
functions Font, has an entry in the font table, its associated value is returned. 

Otherwise, the Borland textheight() function is called. TextWidth() gets 
the width of the text displayed in the current font. Its operation is similar to 
that of TextHeight(). 

Getting Started with OpenZinc Programming 201 

4. Draw. The low-level display calls depend on the type ot function, such as 
Rectangle(), EIlipse(), Polygon( ), and whether the//// parameter is 
TRUE or FALSE. 

void UI_BGI_DISPLAY::Rectangle(SCREENID screenID, int left, int top, 
int right, int bottcm, const UI_PALETTE *palette, int width, int fill, 
int xor, const UI_REGION *clipRegion) 

{ 
5. Update the screen quickly with VirtualGet() and VirtualPut(). Briefly, 

these functions allow us to optimize repetitive drawing tasks by copying 
part of the display into a buffer, draw into the buffer, and then copy the 
modified data out of the buffer and onto the screen. For more details, see 

U I B G I D I S P L A Y in the Programmer's Reference. 



Customized Displays 

int UI_BGI_DISPLAY::TextHeight(const char *string, SCREENID, 
LOGICAL_FONT logicalFont) 

{ 
logicalFont &= OxOFFF; 
SetFont(logicalFont); 
if (fontTable[logicalFont].maxHeight) 

return (fontTable[logicalFont].maxHeight); 
else if (string && *string) 

return (textheight((char *)string)); 
else 

return (textheight("Mq")); 
} 
int UI_BGI_DISPLAY::TextWidth(const char *string, SCREENID, 

LOGICAL_F0NT logicalFont) 
{ 

if (Istring || !(*string)) 
return (0); 

SetFont(logicalFont & OxOFFF); 
int length = textwidth((char *)string); 

return (length); 
} 

Graphic display information functions must return the width and height of a 
string in pixel values. In addition, the text width or height should be 
returned, not the cell height and cell width defined by the cellWidth and cell-
Height values. 

Conclusion 

in this chapter, we learned how to derive a display class from 
UI_DISPLAY, for a specific graphics library, UI_BGI_DISPLAY If we had 
had to write UI_BGI_DISPLAY from scratch, we would have spent a lot 
more time. In the next chapter, we'll learn how to use OpenZinc's ability to detect 
language and locale at run time and change the locale of an object according 
to user input. 

194 Getting Started with OpenZinc Programming 



Using Locales 

in this chapter we will begin our discussion of how to globalize a OpenZinc 
application. We start by learning how to work with locales. 

In this tutorial, we learn how to write a program for a department of Interpol, 
which maintains offices in France, Germany, and the United States, and 
whose responsibility is to track bank robberies in those countries. The Inter-
pol MIS director asks us to write an Incident Report program that allows 
Interpol agents to record the date of the crime, the institution robbed, and the 
amount stolen. Since the program might be deployed in any of the Interpol 
international offices, and since the agents will record robberies in those 
countries, they must be able to record the type of currency stolen with the 
appropriate currency symbol. 

detecting the system locale 

setting an object's locale 
* 

Getting Started with OpenZinc Programming 



Using Locales 

What we'll do 
Here are the steps we'll take in writing INTRPOL1.CPP. 

1. Load the report window from the .DAT file. 

2. Determine what the system's default locale is and update the window 
accordingly. 

3. Display the window. 

4. If the user selects a different locale for the amount field, update the 
field's locale information and exchange the value for the new setting. 

Running the Compile the source code and run the executable. You should see the follow-
program ing window on the screen: 

Report Window 

Incident Date: ] 08/10/1994 

Institution: 

Amount: $100.00 

U.S. Dollars | ± | 

By default, the date and the currency symbol use the system's locale. So if 
the Interpol agent is running the application in Germany on a computer with 
a German configuration, the date will appear in the normal German fashion, 
and the amount will use the deutschemarks currency symbol. But if the Ger-
man Interpol agent records a robbery that took place in France, the program 
will allow him to update the amount field with the currency symbol for 
francs. Note that the date field remains in the format specified by the sys-
tem's configuration. 

204 Getting Started with OpenZinc Programming 



Source code The source code for our tutorial is located in \OpenZinc\TUTOR\GLOBAL, 
and contains the following files: 

• INTRPOL1.CPP Contains the main event loop inside 
UI_APPLICATION: :Main() , as well as the implementation of the 
REPORTJWINDOW class 

• INTRPOL1.HPP Contains the declaration for the R E P O R T -
WINDOW class and application constants and events. 

• IPOLWIN1.CPP The object table for the objects we created in the 
Designer. 

• IPOLWINl.DAT. The data file created in the Designer. Contains the 
data for creating the report window and its fields. 

• IPOLWIN1.HPP The header information for the window and its fields 
that we created in the Designer. 

• *.DEF, *.RC. The definition and resource files when compiling for dif-
ferent environments. 

• *.MAK. The compiler-dependent makefiles. 

Analyzing the 
source code 

The header file has three sections, INTRPOL1.HPP The first section 
defines the following country identifiers: 

const int GERMANY = 0; 
const int UNITED_STATES = 1; 
const int FRANCE = 2; 

These country name constants are used to locate the proper exchange rate 
data when switching locales. We'll talk more about these constants later. 

The next section contains some definitions for events specific to this applica-
tion: 

const ZIL_USER_EVENT LOCALE_FIRST = 10000; 
const ZIL_USER_EVENT GERMAN_LOC = 10000; 
const ZIL_USER_EVENT US_LOC = 10001 
const ZIL_USER_EVENT FRANCE_LOC = 10002 
const ZIL_USER_EVENT LOCALE_LAST = 10010 

The program places these user-defined events on the event queue when the 
user changes locales by selecting an option from the combo box. We will 
trap these events in the REPORT_WINDOW::Event( ) function. 

Getting Started with OpenZinc Programming 



Using Locales 

The third section contains the definition for REPORT_WINDOW, the class 
used to display our reports. REPORT_WINDOW maintains a pointer to the 
amount field and the current locale name, since they are used fairly often. It 
also contains the Event() function and a ConvertAmount() function which 
is used to update the amount field when the user selects a new locale. Here's 
the definition for the REPORT_WINDOW class: 

class REPORT_WINDOW : public UIWJWINDOW 
{ 
public: 

REPORT_WINDOW(ZIL_ICHAR *name); 
~REPORT_WINDOW(void); 
EVENT_TYPE Event(const UI_EVENT &event); 

protected: 
void ConvertAmount(EVENT_TYPE ccode); 

private: 
UI_WINDOW_OBJECT *amountField; 
ZIL_ICHAR *currentLocaleName; 

}; 
REPORTJWINDOW uses the following member variables: 

• amountField, a pointer to the UIW_BIGNUM used to display the 
amount. 

• ciirrentLoccileNcime, a string pointer that contains the two-letter ISO 
locale name currently displayed. 

The main source file, INTRPOL1.CPP, contains four sections. The first 
section includes the header files: 

#include <ui_win.hpp> 
#include "intrpoll.hpp" 
#include "ipolwinl-hpp" 

Note that we included the header file generated by the Designer as well as 
the header file that has our application-specific code. 

The second section sets up data: 

// Create static strings used in application, 
static ZIL_ICHAR _USLocaleString[] = { 'U'/S', 0 }; 
static ZIL_ICHAR _DELocaleString[] = { 'D','E', 0 }; 
static ZIL_ICHAR _FRLocaleString[] = { 'F','R', 0 }; 
static ZIL_ICHAR _amountFieldName[] = { 
' A V M ' , ' 0 ' , ' U ' , ' N ' , ' T , ' F V I 1 ,'E','L','D', 0 }; 
static ZIL_ICHAR convertBoxName[] = { 
'C'/O'/N'j'V'f'E'/R'/S'/I'/O'/N'/S 1, 0 }; 
static ZIL ICHAR _fileName[] = { 
'i'j'p'/o'/l'j'w'/i'j'n'/l'/.'/d'/a'/t', 0 }; 

204 Getting Started with OpenZinc Programming 



static ZIL_ICHAR _windowName[] = { 
' R V E V P ' / O V R V T V ^ / W V I V N ' / D V O V W , O }; 
// Table for exchange rates and to identify locales. 
static struct EXCHANGE { 

int country; 
ZIL_ICHAR *ISOLocaleName; 
ZIL_RBIGNUM exchangeRate; 

}_exchange[] = { 

{ GERMANY, _DELocaleString, 1.5 }, 
{ UNITED_STATES, _USLocaleString, 1.0 }, 
{ FRANCE, _FRLocaleString, 0.5 }, 
{ -1, ZIL_NULLP(ZIL_ICHAR), 1.0 } 

}; 
The first part of this data initialization creates Unicode-compatible strings 
for use in the application. The second part creates a structure that is used to 
look up exchange rates and identify locales. 

The third part of the main source code file contains the definitions for the 
REPORTJWINDOW member functions. We will discuss the important 
parts of these functions when we look at the interface, below. 

The fourth section is the definition of the UI_APPLICATION::Main() 
function: 

int UI_APPLICATION::Main(void) { 
// The UI_APPLICATION constructor automatically initializes the 
// display, eventManager, and windowManager variables. 
// This line fixes linkers that don't look for main in the 
// .LIBs. 
UI_APPLICATION::LinkMain(); 
// Create derived window. 
UI_WINDOW_OBJECT::defaultstorage = new 

ZIL_ST0RAGE_READ_0NLY(_fileName); 
UIW_WINDOW *window = new REP0RT_WIND0W(_windowName); 
// Add window to the window manager. 
*windowManager 

+ window; 
// Process user responses. 
UI_APPLICATION::Control( ); 
// Clean up. 
delete UI_WINDOW_OBJECT::defaultStorage; 
return (0); 

} 

Getting Started with OpenZinc Programming 



Using Locales 

We create a UI_STORAGE_READ_ONLY object to which we assign the 
UI_WINDOW_OBJECT::defaultStorage. This is the .DAT file that con-
tains the Report Window. We won't describe the creation of the window 
using the Designer—if you need to review this process, see "Using the 
Designer" on page 139. UI_APPLICATION::Main() also creates the 
Report Window and adds it to the Window Manager. The rest of this func-
tion you should be familiar with by now. 

Program flow Using UI_APPLICATION::Main( )'s built-in main event loop, our pro-
gram flow is simple. We load the report window from the .DAT file and add 
it to the Window Manager. The report window determines what the system's 
locale is and updates its combo box accordingly. If the user selects a differ-
ent locale from the combo box, the combo box option places a message on 
the event queue, which the REPORT_WINDOW::Event() function uses. 
Then the event function updates the amount field. 
REPORT_WINDOW::Event() passes all other events back to its base 
class, UIW_WINDOW::Event(). 

REPORTJWINDOW 

Wiring up the Once we've created the window, the next step is to "wire up" the interface so 
interface that we can trap user events and change the amount field's locale when the 

user requests it. In the constructor for REPORT_WINDOW we get a 
pointer to the amount field so that we can change its locale and value. We 
then get the initial locale being used by the system by inspecting localeMcm-
ager.defaultName. localeManager is a global, static instance of 
ZIL_LOCALE_MANAGER. This object maintains all the application's 
locales. 

Once we determine the system locale, the constructor determines if the 
application supports the locale by looking for the locale name in the 
_exchange structure. If the application does not support that locale, we set 
the application's locale to be the first entry in the structure as a default. 

204 Getting Started with OpenZinc Programming 



After we have a valid locale for the field, we update the combo box so when 
the application comes up, its selection matches the contents of the amount 
field by inspecting each object attached to the combo box, comparing its 
value to the current locale. Once we find the proper selection, we simply re-
add it to the combo box. This makes it the current selection. 

Changing The REPORT_WINDOW::Event() function is the heart of the application, 
locales While it doesn't have much code in it, all our functionality really exists 

there. 

Whenever the user selects a locale option from the combo box, a message is 
put on the event queue because the combo box options are UIW_BUTTONs 
with the BTF_SEND_MESSAGE flag set. The event that is put on the queue 
is one of the events that we defined in the header file. After that event is 
pulled off the queue and sent to the Window Manager by the 
UI_APPLICATION::Control() function, the Window Manager will route 
the event to the Report Window. We trap for those messages in the Event() 
function: 

EVENT_TYPE REPORT_WINDOW::Event(const UI_EVENT Sevent) 
{ 

// Get the logical event. 
EVENT_TYPE ccode = LogicalEvent(event); 
// Check to see if the event is one of ours. 
if (ccode >= LOCALE_FIRST && ccode <= LOCALE_LAST) 

ConvertAmount(ccode); 
II If it's not our event, pass it to the UIW_WINDOW base class, 
else 

ccode = UIW_WINDOW::Event(event); 
return (ccode); 

} 
Any other messages are passed to the base class's Event() function so that 
the object can process them properly. 

When we get a message to change the locale, we call 
REPORT_WINDOW::ConvertAmount(), passing it the message we 
received. The most important thing ConvertAmount() does is set the locale 
for the amount field. It does this by getting a pointer to the ZIL_BIGNUM 
used by the UIWJBIGNUM object, and then calling the ZIL_BIGNUM 's 
SetLocale( S) function: 

// Set the new locale. 
amount->SetLocale(_exchange[newLocale].ISOLocaleName); 

Getting Started with OpenZinc Programming 



Using Locales 

The rest of the code in ConvertAmount() is related to changing the mone-
tary value using the exchange rates, and so we won't discuss that here. 

Conclusion 

in this chapter, we learned how to detect which locale the system is using 
and how to set which locale a particular instance of an object is using. We 
also learned how to set a combo box entry. In the next chapter we will extend 
this tutorial and learn how to switch languages at run time. 

204 Getting Started with OpenZinc Programming 



Chapter 18 Using Languages 

In the last chapter we began a discussion of globalizing applications by 
learning how to use locales. In this chapter we will continue by learning how 
to work with languages in our application. We will continue with the Interpol 
example we began in the last chapter and expand it to allow switching of lan-
guages at run time. 

detecting the system language 

setting the application language 

WBBmBmsm 

Getting Started with OpenZinc Programming 



Using Languages 

What we'll do 
Here are the steps we'll take in writing INTRPOL2.CPP. 

1. Determine what the system's default language is and load the proper win-
dow. 

2. Display the window. 

3. If the user selects a different language for the application, load the new 
window and delete the old window. 

Running the Compile the source code and run the executable. You should see this win-
program dow: 

= | Report W i n d o w - E n g l i s h l " r j A ' 
Language 

Incident Date: 08/10/1994 

Institution: • 
Amount: I $100.00 

U.S. Dollars | ± j 

Notice that this window is the same as the one we saw in the last chapter, 
except that this window has a pull-down menu. By default, the window uses 
the language used by the system if our program supports that language. So if 
the Interpol agent happens to work in Germany on a computer with a Ger-
man configuration, the program will detect that and bring up a German win-
dow will appear. If the user selects a new language from the pull-down 
menu, a the program will load a new window in that language and the dis-
card the old window. 

212 Getting Started with OpenZinc Programming 



Source code The source code for our tutorial is located in \OpenZinc\TUTOR\GLOBAL, 
and contains the following files: 

• INTRPOL2.CPP Contains the main event loop inside 
UI_APPLICATION::Main() , as well as the implementation of the 
REPORT_WINDOW class. 

• INTRPOL2.HPP Contains the declaration for the R E P O R T -
WINDOW class and application constants and events.. 

• IPOLWIN2.CPP The object table for the objects we created in the 
Designer. 

• IPOLWIN2.EN, IPOLWIN2.DE, IPOLWIN2.FR The data files ere 
ated in the Designer. Each contains the data for creating the report win-
dow and its fields for the language identified by the file's extension. 

• IP0LWIN2.HPP The header information for the window and its fields 
that we created in the Designer. 

• *.DEF, *.RC. The definition and resource files when compiling for dif-
ferent environments. 

• *.MAK. The compiler-dependent makefiles. 

Analyzing the We've defined several new events to allow INTRPOL2.HPP to changing 
source code languages: 

const ZIL _USER _EVENT LANGUAGE_FIRST= 10020 
const ZIL_ _USER_ _EVENT GERMAN_LANG 10020 
const ZIL_ _USER_ _EVENT ENGLISH_LANG 10021 
const ZIL_ _USER_ _EVENT FRENCH_LANG 10022 
const ZIL_ _USER_ _EVENT LANGUAGE_LAS T 10030 

const ZIL USER EVENT DELETE OBJECT 10040; 

The first five user-defined events are those the program places on the event 
queue when the user changes languages by selecting an option from the pull-
down menu. We will trap these events in the 
REPORT_WINDOW::Event( ) function. 

The last event is used to delete the old window when a new language is 
selected. We trap this event in the REPORT_WINDOW::Event( ) function, 
as well. 

We added several new strings to INTRPOL2.CPP to accommodate differ-
ent languages: 

static ZIL_ICHAR _enLanguageString[] = { 'e','n', 0 }; 
static ZIL_ICHAR _deLanguageString[] = { 'd','e', 0 }; 

Getting Started with OpenZinc Programming 



Using Languages 

static ZIL_ICHAR _frLanguageString[] = { 'f','r', 0 }; 

The JileName string changed slightly to reflect the different .DAT files 
being used. 

The _exchange structure expanded to include an entry for the language: 

// Table for exchange rates and to identify locales. 
static struct EXCHANGE 
{ 

int country; 
ZIL_ICHAR *ISOLocaleName; 
ZIL_ICHAR *ISOLanguageName; 
ZIL_RBIGNUM exchangeRate; 

}_exchange[] = { 
{ GERMANY, _DELocaleString, _deLanguageString, 1.5 }, 
{ UNITED_STATES, _USLocaleString, _enLanguageString, 1.0 }, 
{ FRANCE, _FRLocaleString, _frLanguageString, 0.5 }, 
{ -1, ZIL_NULLP(ZIL_ICHAR), ZIL_NULLP(ZILICHAR), 1.0 } 

}; 
A new global function, CreateWindow(), was added to the application. 
This function takes an identifier which specifies which entry in the 
_exchange table corresponds to the language in use. The function then 
obtains the language name from the table, creates a new default storage, and 
loads the proper Report Window. 

The REPORT_WINDOW: :Event() function is the only member function 
that changed for this application. We added two sections to the function: one 
to change languages and the other to handle the deletion of the old Report 
Window. We will discuss how these are accomplished when we talk about 
the interface below. 

The last section that changed in INTRPOL2.CPP is the 
UI_APPLICATION::Main() function, which we updated to check for the 
system's language and then to load an appropriate window: 

// Get default system language name. languageManager is a 
// global library variable that contains all the ZIL_LANGUAGE 
// objects. 
ZIL_ICHAR *currentLanguageName = languageManager.defaultName; 
// Locate the entry in the EXCHANGE structure for the default 
// language. 
int currentLanguage = -1; 
for (int i = 0; _exchange[i].ISOLocaleName; ++i) { 

if (strcmp(_exchange[i].ISOLanguageName, 
currentLanguageName) == 0) 

212 Getting Started with OpenZinc Programming 



currentLanguage = i; 
} 
// If system language doesn't correspond to one supported by the 
// application, then use a default language, 
if (currentLanguage == -1) 

currentLanguage = 0; 

// Add window to the window manager. 
*windowManager 

+ CreateWindow(currentLanguage); 

If the system's language is not supported by the application, we assign a default 
language and load the window. We will discuss this later on in the chapter. 

Program flow Using UI_APPLICATION::Main( )'s built-in main event loop, our pro-
gram flow is simple. We first determine the system's language and load the 
proper Report Window from the .DAT file and add it to the Window Man-
ager. If the user selects a different language from the pull-down menu, the 
menu item places a message on the event queue which is routed to the 
REPORT_WINDOW::Event() function. The proper window is then 
loaded and displayed and the old window deleted. All other events that we 
don't handle are passed by REPORT_WINDOW::Event() back to the base 
class UIW_WINDOW::Event(). 

REPORTJ/VINDOW 

Wiring up the Once we've created the window, the next step is to "wire up" the interface so 
interface that we can trap user events and change the application's language when the 

user requests it In UI_APPLICATION::Main(), we look at the system's 
language and determine if it is one that the application supports. To get the 
language we simply inspect JanguageManager.defaidtName. languageMan-
ager is a global, static instance of ZIL_LANGUAGE_MANAGER. All 
languages used by the application are maintained by this object. We deter-
mine if the application supports the language by looking for the language 
name in the _exchange structure. If the application dos not support that lan-
guage, we set the language to be the first entry in the structure as a default. 
We then load the proper window. 

Getting Started with OpenZinc Programming 



Using Languages 

Changing Whenever the user selects a language option from the pull-down menu, a 
languages message is put on the event queue because the pop-up items options have the 

MNIF_SEND_MESSAGE flag set. The event that is put on the queue is one 
of the events that we defined in the header file. After that event is pulled off 
the queue and sent to the Window Manager by the 
UI_APPLICATION::Control() function, the Window Manager will route 
the event to the Report Window. We trap those messages in the Event( ) 
function: 

// Change language. 
else if (ccode >= LANGUAGE_FIRST && ccode <= LANGUAGE_LAST) 
{ 

// Delete old default storage. 
delete UI_WINDOW_OBJECT::defaultStorage; 
// Determine language to load, 
int currentLanguage = -1; 
for (int i = 0; _exchange[i].ISOLocaleName; ++i) 
{ 

if (_exchange[i].country + LANGUAGE_FIRST == ccode) 
currentLanguage = i; 

} 
// Change the application's default language. 

languageManager.LoadDefaultLanguage( 
_exchange[currentLanguage].ISOLanguageName); 

// Create new window. 
•windowManager 

+ CreateWindow(currentLanguage); 

// Cause current window to be subtracted. 
UI_EVENT tEvent; 
tEvent.type = S_SUBTRACT_OBJECT; 
tEvent.data = this; 
eventManager->Put(tEvent); 
// Cause current window to be deleted. 
tEvent.type = DELETE_OBJECT; 
tEvent.windowObject = this; 
eventManager->Put(tEvent); 

} 
When a message to change languages arrives, the first thing the function 
does is delete the old default storage. It then locates the proper entry in the 
_exchange table for the new language. To set the application's language it 
calls lajigiiageManager.'LoadDefauliLsmguagei). This will cause all 
library strings to be displayed in the new language. After setting the applica-
tion's language we call CreateWindow(), which loads the new window. 

212 Getting Started with OpenZinc Programming 



The Event() function then puts two messages on the event queue to remove 
the old language window. We can't simply delete the window because the 
program is running in an instance of the window. Nor can we simply place 
an SjCLOSE message on the event queue, because by the time the program 
will processed it, the current window will be the new language window. So 
we have to subtract and delete the window ourselves. 

The first event we place on the event queue is S_SUBTRACT_OBJECT. This 
event is processed by the Window Manager when it receives it from the 
UI_APPLICATION::ControI() function. The second message placed on 
the queue is DELETE_OBJECT, which is one that we defined for this appli-
cation. It will be handled by the new Report Window's Event() function. 

The section that handles the DELETEjOBJECT message is the second new 
part of the Event() function: 

// Delete old window, 
else if (ccode == DELETEOBJECT) 

delete event.windowObject; 

As usual, any events that we don't handle are passed to the base class 
Event() function. 

Conclusion 

in this chapter, we learned how to detect which language the system is 
using and how to set which language the application is using. We also 
learned one technique for switching windows at run time. In the next chap-
ter, we'll learn about the design of a large, complex OpenZinc application. 

Getting Started with OpenZinc Programming 



Using Languages 

218 Getting Started with OpenZinc Programming 



Chapter 19 Program Design 

In this chapter, we'll learn how to write a complex program using OpenZinc. 
Our program, called ZincApp, contains several objects that perform special-
ized tasks, and communicate with the main control window by sending mes-
sages. The main control window then responds to these messages by calling 
certain member functions. 

design of a large application 

using event map tables 

using accelerator keys 
. . . : . . 

Getting Started with OpenZinc Programming 



Program Design 

What we 7/ do 

Here's what we'll do in this chapter. 

1. Discuss ZincApp's design and implementation. 

2. Examine what happens when the user selects each option. 

Source code ZincApp source is located in OpenZinc\TUTOR\ZINCAPP. Here's a list of 
ZincApp's source code components and what each contains: 

• ZINCAPP.CPP The main program loop, and the main() or WinMain() 
function. 

• ZINCAPP.HPP Definition of the display, window, event, and help mes-
sages that pass through the system when the user selects a pop-up item 
from the main control window. Also contains the declarations for the 
ZINCAPP_WINDOW_MANAGER, CONTROL_WINDOW, and 
EVENT_MONITOR classes. 

• CONTROL.CPP Contains member functions which we'll use to create 
the main control menu and to handle all main control throughout the pro-
gram. Here are those member functions: 

CONTROL JWINDOW::CONTROL_WINDOW(), 
CONTROLJWINDO W: :Event(), 
CONTROL_WINDOW: :Message(), 
ZINCAPP_WINDOW_MANAGER::Event(), 
ZINCAPP_WINDOW_MANAGER::ExitFunction() 

• SUPPORT.CPP The object table that must be compiled with the pro-
gram since persistent window objects are to be used. 

• SUPPORT.DAT. The binary data file created by OpenZinc Designer, which 
contains the help context and persistent window object information. 

• SUPPORT.HPP. The help context constant information used to associate 
a help context with a window. It also contains the persistent object identi-
fication values entered as the stringID field for each object in the .DAT 
file. 

• DISPLAY.CPP. Contains the CONTROL_WINDOW::Option_DLsplay() 
member function. Changes the type of display. 

220 Getting Started with OpenZinc Programming 



• EVENT.CPP. Contains the CONTROL_WINDOW::Option_Event() and 
EVENT_MONITOR() member functions. Process all the messages that 
are produced when an Event menu item is selected from the main control 
window. 

• HELP.CPP Contains the CONTROL_WINDOW::OptionHelp() 
member function. It processes all of the messages that are produced when 
a Help menu item is selected from the main control window. 

• WINDOW.CPP Contains the 
CONTROLJWINDOW::OptionWindow() member function. This 
function invokes the proper window that was selected from the main con-
trol window by processing all the messages that are produced when a 
menu item is selected. 

• *.DEF, *.RC. The environment-specific definition and resource files 
required when compiling for other environments.. 

• *.MAK. The compiler-dependent makefiles associated with ZincApp. 

Program ZincApp provides a single control window, with pull-down items in a pull-
specification down menu displaying selections. This control window gives the user easy 

access to all functions. We could write ZincApp with multiple windows, but 
then it might suffer from a common malady of graphical user interfaces 
called "windowitis," where the application's functionality is spread over too 
many windows. 

= 1 OpenZinc Appl icat ion I z J . f J 
Control W i n d o w Event Help 

Getting Started with OpenZinc Programming 



Program Design 

The control window controls the pull-down items, which in turn control 
items within their scope. For example, the control window may pass control 
to a pull-down item that handles screen functionality. In turn, this pop-up 
item may send a message through the system, requesting that some other 
object perform some action. 

each item has a call function or a send message function 

Design and implementation 

ZincApp consists of several parts: 

• the Event Manager, which contains the event queue; 

• the ZincApp window manager class, derived from the OpenZinc Window 
Manager; 

• the event monitor, which receives events from the ZincApp Window 
Manager and displays them; 

• various pull-down menu options, which place a message on the queue 
when selected; 

• and the Control Window, which contains the member functions that 
allow ZincApp to respond to user input. 

Here's what happens when we launch ZincApp. 

1. The CONTROL_WINDOW constructor sets up the window and menu 
items. Here's a partial listing of the constructor: 

CONTROL_WINDOW::CONTROL_WINDOW(void) : UIW_WINDOW(0, 0, 76, 6, 
WOF_NO_FLAGS, WOAF_LOCKED) 

{ 

220 Getting Started with OpenZinc Programming 



// Control menu items. 
static UI_ITEM controlltems[] = 
{ 

{ S_REDISPLAY,VOIDF(CONTROL_WINDOW::Message), 
"&Refresh\tShift+F6", MNIF_NO_FLAGS }, 

{ 0,VOIDF(0),"",MNIF_NO_FLAGS },// item separator 
{ L_EXIT_FUNCTION,VOIDF(C0NTR0L_WIND0W::Message), 

"E&xit\tAlt+F4",MNIF_N0_FLAGS }, 
{ 0, 0, 0, 0 }// End of array. 

}; 
// Attach the sub-window objects to the control window. 
*this 

+ new UIW_BORDER 
+ new UIW_MAXIMIZE_BUTTON 
+ new UIW_MINIMIZE_BUTTON 
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC) 
+ new UIW_TITLE("OpenZinc Application") 
+ &(*new UIW_PULL_DOWN_MENU 

+ new UIW_PULL_D0WN_ITEM("SControl", WNF_NO_FLAGS, 
controlltems) 

+ new UIW_PULL_DOWN_ITEM("SDisplay", WNF_NO_FLAGS, 
displayltems) 

+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS) 
+ controlObjects 
+ inputobjects 
+ selectObjects) 

+ new UIW_PULL_D0WN_ITEM("&Event", WNF_NO_FLAGS, eventltems) 
+ new UIW_PULL_DCWN_ITEM("&Help", WNF_NO_FLAGS, helplterns)); 

} 
Part of the task of the control window's constructor is to initialize the 
UIJTTEM array contained in each pull-down item in the control win-
dow's menu bar. This array contains: 

The message. The first field in the UI_ITEM structure. For example, the 
first Control menu item, Refresh, contains the message S_REDISPLAY, 
which will pass through the system whenever the user selects the Con-
trol I Refresh menu item. 

The user function. Called when the user selects a menu item. All menu 
items specify CONTROL_WINDOW::Message() as their user func-
tion. 

The string information. The text displayed on the screen. The string for 
the Refresh menu item is "&Refresh\tShift+F6." We'll discuss the 
"Shift+F6" portion of the string later in this chapter. Note that this hotkey 
only works in DOS. 

Getting Started with OpenZinc Programming 



Program Design 

The menu item flags. These control how the menu items look and act. For 
example, MN1F_CHECK_MARK tells the menu item to display a check 
mark to the left of the menu item's text when selected. 

2. When the user selects an option, two events are generated. The first is the 
system event, handled top down or bottom up, according to the type of 
operating environment. The second is the event that a pull-down menu 
will place on the event queue for retrieval by the control window. 

The control window responds to events by overriding the Event() virtual 
function in the base UIW_WINDOW class. Here it is: 

class CONTROL_WINDOW : public UIW_WINDOW { 

public: 
CONTROL_WINDOW(void); 
virtual EVENT_TYPE Event(const UI_EVENT Sevent); 

Then member functions inside the control window then call the appropri-
ate member function, passing the event, type of the event as a parameter: 

class CONTROL_WINDOW : public UIW_WINDOW { 

protected: 
void OptionDisplay(EVENT_TYPE item); 
void OptionEvent(EVENT_TYPE item); 
void OptionHelp (EVENT__TYPE item); 
void OptionWindow(EVENT_TYPE item); 

}; 
Depending on the circumstances, however, one member function of the 
control window will send a message through the system, whereas another 
may call another member function. For example, OptionDisplay( ) 
doesn't reset the display, but sends a message through the system instead. 
Conversely, OptionEvent() creates an event monitor object with a mem-
ber function without creating an additional message. 

The control window will receive four types of messages: 

• Display option messages. Generated when a Display menu item has 
been selected from the main control window. They are processed by 
the OptionDisplay() member function. 

• Window option messages. Generated when a Window menu item has 
been selected from the main control window. Processed by the 
OptionWindow() member function. 

• Event option messages. Generated when an Event menu item has 
been selected from the main control window. Processed by the 
OptionEvent() member function. 

220 Getting Started with OpenZinc Programming 



• Help option messages. Generated when a Help menu item has been 
selected from the main control window. Processed by the 
OptionHelp() member function. 

The UIW_WINDOW::Event() member function processes all other 
messages. Note that the Window Manager automatically processes the 
control option messages, since they represent operations handled by the 
Window Manager. 

Accelerator keys ZincApp uses two accelerator keys: 

<Shift+F6>. Causes the Window Manager to clear the screen and to redis-
play each window attached to the Window Manager's list of window objects. 

<Alt+F4>. Causes the exit application window to appear on the screen. 

The CONTROL_WINDOW::Event() function contains the implementa-
tion of the accelerator keys. 

EVENT_TYPE CONTROL_WINDOW::Event(const UI_EVENT &event) 
{ 

// Check for an accelerator key. 
EVENT_TYPE ccode = event.type; 
if (ccode == L_EXIT_FUNCTION) 

eventManager->Put(UI_EVENT(L_EXIT_FUNCTION)); 
if (ccode == E_KEY) 
{ 

// Define the set of accelerator keys. 
Static struct ACCELERATOR_PAIR { 
RAW_C0DE rawCode; 
L0GICAL_EVENT logicalType; 

} acceleratorTable[] = { 
{ SHIFT_F6,S_REDISPLAY }, 
{ ALT_F4,L_EXIT_FUNCTI0N }, 
{ 0, 0 }// End of array. 

}; 
for (int i = 0; acceleratorTable[i].rawCode; i++) 

if (event.rawCode == acceleratorTable[i].rawCode) { 

UI_EVENT tEvent(acceleratorTable[i].logicalType); 
eventManager->Put(tEvent);// Put the accelerator key 
return (ccode);// into the system. 

} 
} 
// Process the event according to its type, 
if (ccode >= MSG^HELP) 

Getting Started with OpenZinc Programming 



Program Design 

OptionHelp(event.type);// Help menu option selected, 
else if (ccode >= MSG_EVENT) 

OptionEvent(event.type);// Event menu option selected, 
else if (ccode >= MSG_WIND0W) 

OptionWindow(event.type);// Window menu option selected, 
else if (ccode >= MSG_DISPLAY) 

OptionDisplay(event.type); // Display menu option selected. 
else if (ccode >= MSG_C0NTR0L) { 

UI_EVENT tEvent(event.type); 
eventManager->Put(tEvent);// Put the accelerator key 

} 
else 

ccode = UIW_WIND0W::Event(event);// Unknown event. 
// Return the control code, 
return (ccode); 

} 
Here's what happens when the user presses an accelerator key: 

1. CONTROL_WINDOW::Event( ) receives the event from the Window 
Manager. 

2. If the event is a normal key, the control window searches its list of raw 
code/logical type pairs. 

3. If an accelerator key is detected, its logical value is placed into the Event 
Manager. The Window Manager interprets its value when the main pro-
gram loop gets the next key using eventManager->Get(). The definition 
of the two accelerator keys is given by the cicceleratorTable static array 
shown above. Note that the accelerator keys are available only when the 
main control window is the front window. 

220 Getting Started with OpenZinc Programming 



General 
program flow 

What happens when the user selects one of the options in the menu bar? 
Though the OpenZinc window manager handles the Control option, the control 
window handles the others in steps one through four. At the fifth step, how-
ever, the control window calls a different member function associated with 
the option that the user selected. 

OH 

ZINCAPP _WINDOW_MANAGER 

CONTROL_WINDOW 

option 

1 selected option 

i O t O © 
| CONTROL_WINDOW::MESSAGE | 

Getting Started with OpenZinc Programming 



Program Design 

1. After the user selects a menu item, the UIW_POP_UP_ITEM: :Event( ) 
function calls the CONTROL_WINDOW::Message() function. 

EVENT_TYPE UIW_BUTT0N::Event(const UI_EVENT &event) 
{ 

case L_SELECT: 
case L_END_SELECT: 

UI_EVENT tEvent = event; 
if (userFunction) 

(*userFunction)(this, tEvent, ccode); 

The pop-up item's Event() function passes some arguments to 
Message(). Those arguments are 

• a pointer to the selected display option, this; 

' a copy of the event that caused the user function to be called, tEvent, 
and 

• the logical interpretation, ccode, of the event that caused Event() to 
be called. Notice the variable tEvent needs to be a copy of event, 
since it's a constant variable whose values cannot be modified. 

2. The CONTROL_WINDOW: :Message() function sends a request to 
remove the temporary display options menu by sending an 
S_CLOSE_TEMPORARY message to Event Manager and thereby 
through the system. It then sends the display request through the system 
by setting event.type to be the menu item's value, for example, to one of 
the MSG_DISPLAY values defined in the displayOptions array, and send-
ing this message through the system. 

EVENT_TYPE CONTROL_WINDOW::Message(UI_WINDOW_OBJECT *object, 
UI_EVENT &event, EVENT_TYPE ccode) 

{ 
if (ccode == L_SELECT) { 

for (UI_WINDOW_OBJECT *tObject = 
object->windowManager->First(); 
tObject && FlagSet(tObject->woAdvancedFlags, 
W0AF_TEMP0RARY); 

tObject = tObject->Next()) 
object->eventManager->Put(UI_EVENT(S_CLOSE_TEMPORARY)); 
event.type = ((UIW_POP_UP_ITEM *)object)->value; 
object->eventManager->Put(event); 

} 
return (ccode); 

} 

220 Getting Started with OpenZinc Programming 



3. Control returns to the main event loop, first by exiting 
CONTROLJWINDOW::Message(), and then by exiting the Event() 
virtual functions of the UIW_POP_UP_ITEM, 
CONTROL_WINDOW, and ZINCAPP_WINDOW_MANAGER 
classes. 

4. eventManciger->Get() gets two messages that the program generates 
from the event queue. The first message is S_CLOSE_TEMPORARY. 
Responding to this message, the Window Manager removes the display 
options menu from the screen. 

5. The second message tells the control window which menu option the 
user selected. In the following parts of this chapter, we'll examine what 
the control window does when it receives one of these messages. 

Control 

=| OpenZinc Application 1 ^ i 
Control Window Event Help 

Refresh Shift+F6 

Exit AH+F4 

This item contains ZincApp's control options, Refresh and Exit, which 
refresh the screen and allow the user to exit the application. The 
CONTROL_WINDOW constructor initializes these options here: 

CONTROL_WINDOW::CONTROL_WINDOW(void) : UIW_WINDOW(0, 0, 
76, 6, WOF_NO_FLAGS, W0AF_L0CKED) 

{ 
// Control menu items. 
static UI_ITEM controlltems[] = { 

{ S_REDISPLAY,VOIDF(Message),"&Refresh\tShift+F6", 
MNIF_NO_FLAGS }, 

{ 0, VOIDF(O),"", 0 },// item separator 
{ LJEXIT_FUNCTION,VOIDF(Message),"E&xit\tAlt+F4", 
MNIF_NO_FLAGS }, 

{ 0, 0, 0, 0 }// End of array. 
}; 

Getting Started with OpenZinc Programming 



Program Design 

// Attach the sub-window objects to the control window. 
*this 

+ new UIW_B0RDER 
+ new UIW_MAXIMIZE_BUTTON 
+ new UIW_MINIMIZE_BUTT0N 
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC) 
+ new UIW_TITLE("OpenZinc Application") 
+ &(*new UIW_PULL_DOWN_MENU 

+ new UIW_PULL_DOWN_ITEM("&Control", WNF_N0_FLAGS, 
controlltems) 

+ new UIW_PULL_DOWN_ITEM("&Display", WNF_N0_FLAGS, 
displaylterns) 

+ &(*new UIW_PULL_DOWN_ITEM("SWindow", WNF_N0_FLAGS) 
+ controlObjects 
+ inputObjects 
+ selectobjects) 

+ new UIW_PULL_DOWNJ[TEM("&Event", WNF_N0_FLAGS, 
eventltems) 

+ new UIW_PULL_DOWN_ITEM("&Help", WNF_N0_FLAGS, 
helpltems)); 

220 Getting Started with OpenZinc Programming 



Control program 
flow 

What happens when the user selects the Control option? First, the window 
executes steps one through four of the general program flow. Then it exe-
cutes a fifth step. 

OH 

CONTROL_WINDOW 
refresh 
exit 

L 
© * 
CONTROL WINDOW::Control 

2. 

3. 

The UIW_POPJJP_ITEM::Event() function calls the 
CONTROL_WINDOW: :Message() function 

The CONTROLJWINDO W: :Message() function sends a request to 
remove the temporary display options menu by sending an 
S_CLOSE_TEMPORARY message through the system. 

Control returns to the main event loop. 

Getting Started with OpenZinc Programming 



Program Design 

4. eventManager->Get() gets two messages that the program generates. 
The first message it gets is S_CLOSE_TEMPORARY. 

5. The second message it gets is the value of the menu item from event, type, 
which it passes to the Window Manager by calling 
windowManager->Event(). When the Window Manager receives the 
following messages, it performs the corresponding actions: 

• S_REDISPLAY—Clears the screen and redisplays each window in 
the Window Manager's list of window objects. 

• L_EXIT_FUNCTION—The Window Manager calls the 
CONTROL_WINDOW::ExitFunction() function, which displays 
an exit window on the screen. 

=1 OpenZinc Appl icat ion 

a This will close the ZincApp tutorial. 

OK j | Cancel j 

If the user selects OK, the Window Manager sends an L_EXIT message 
through the system. The main program breaks from the main loop and 
exit the application. 

Note that in the Control option, the Window Manager and not the control 
window responds to the message. 

220 Getting Started with OpenZinc Programming 



Display options 

- 1 OpenZinc Appl icat ion L'i"*' 
Control D i sp lay W i n d o w Event Help 

1-25x40 text mode 
2-25x80 text mode 
3-(43/50)x80 tex t mode 
4-Graphics mode 

This menu item, available only under DOS, contains ZincApp's display 
options, initialized by the CONTROL_WINDOW constructor. Here's that 
part of the constructor. 

static UI_ITEM displayltems[] = { 

#if defined (ZIL_MSDOS) 
{ MSG_25x4()_M0DE,Message,"&l-25x40 text mode", 
MNIF_NO_FLAGS }, 

{ MSG_25x80_MODE,Message,"&2-25x80 text mode", 
MNIF_NO_FLAGS }, 

{ MSG_43x80_MODE,Message,"&3-(43/50)x80 text mode", 
MNIF_N0_FLAGS }, 

{ MSG_GRAPHICS_MODE,Message,"&4-Graphics mode",MNIF__N0_FLAGS }, 
{ MSG_WIND0WS_M0DE,Message,"&5-Windows 3.X mode", 
MNIF_NON_SELECTABLE }, 

#endif 
{ 0, 0, 0, 0 }// End of array. 

}; 
// Attach the sub-window objects to the control window. 
*this 

+ new UIW_BORDER 
+ new UIW_MAXIMIZE_BUTTON 
+ new UIW_MINIMIZE_BUTTON 
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC) 
+ new UIW_TITLE("OpenZinc Application") 
+ &(*new UIW_PULL_DOWN_MENU 

+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS, controlltems) 
+ new UIW_PULL_DCWN_ITEM( "SDisplay", V®IF_NO_FLAGS, displayltems) 
+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS) 

+ controlObjects 
+ inputObjects 
+ selectobjects) 

+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventltems) 
+ new UIW_PULL_DOWN_ITEM("&Help", VJNF_NO_FLAGS, helplterns)); 

Getting Started with OpenZinc Programming 



Program Design 

Display program 
flow 

What happens when the user selects the Display option? First, the control 
window executes steps one through four of the general program flow. At the 
fifth step, however, it calls the OptionsDisplay() member function. 

return 

CONTROL_WINDOW 
text mode 
graphics mode 

L 
O © [ 1 

CONTROL_WINDOW::OptionDisplay 

2. 

3. 

The UIW_POP_UP_ITEM::Event() function calls the 
CONTROL_WINDOW::Message() function. 

The C O N T R O L j m N D O W : : M e s s a g e ( ) function sends a request to 
remove the temporary display options menu by sending an 
S_CLOSE_TEMPORARY message through the system. 

Control returns to the main event loop. 

220 Getting Started with OpenZinc Programming 



4. eventManager->Get() gets two messages that the program generates. 
The first message it gets is S_CLOSE_TEMPORARY. 

5. The second message it receives is the display message determined by the 
selected menu item. This message is passed by the main loop to the Win-
dow Manager, then is sent by the Window Manager to 
CONTROL_WINDOW::Event( ) since the control window is the front 
window on the screen. The control window evaluates event.type—in this 
case a MSGJDISPLAY message—which results in calling the 
OptionDisplay() member function. 

EVENT_TYPE CONTROL_WINDOW::Event(const UI_EVENT Sevent) { 

Getting Started with OpenZinc Programming 



Program Design 

// Process the event according to its type, 
if (ccode >= MSG HELP) 

OptionHelp(event.type); // Help menu option selected, 
else if (ccode >= MSG_EVENT) 

OptionEvent(event.type); // Event menu option selected, 
else if (ccode >= MSG_WINDOW) 

OptionWindow(event.type); // Window menu option selected, 
else if (ccode >= MSG_DISPLAY) 

OptionDisplay(event.type); // Display menu option selected, 
else 

ccode = UIW_WINDOW::Event(event); II Unknown event. 

// Return the control code, 
return (ccode); 

} 
6. The OptionDisplay() member function evaluates the item's value, 

which was passed down through the item argument, to determine which 
type of display has been requested. At this stage, however, no display is 
recreated. Instead, an S_RESET_DISPLAY is generated and passed 
through the system. We must create and delete displays at the highest 
level of the program, since that is where we initialized the display object, 
and since that is where the program destroys the display when it goes out 
of scope. The following code shows how this message is sent: 

void C0NTR0L_WIND0W::OptionDisplay(EVENT_TYPE item) { 

#if defined (ZIL_MSD0S) 
// Set up the default event. 
UI_EVENT event(S_RESET_DISPLAY, TDM_NONE); 

II Decide on the new display type, 
if (item == MSG_25x4()_M0DE) 

event.rawCode = TDM_25x40; 
else if (item == MSG_25x80_MODE) 

event.rawCode = TDM_25x80; 
else if (item == MSG_43x8()_M0DE) 

event.rawCode = TDM_43x80; 

// Send a message to reset the display. 
// (Code resides in main program loop). 
eventManager->Put(event); 

#endif } 

220 Getting Started with OpenZinc Programming 



ULEVENTJVIANAGER 

o Main event loop 

ZINCAPP_WINDOW_MANAGER 

7. Control returns once again to the main event loop by exiting the associ-
ated Event() functions. 

8. The main loop picks up the S_RESET_DISPLAYmessage by calling 
eventManager->Get(). This message causes the program to 

• tell the Event and window managers that the old display is about to 
be deleted. This allows them to uninitialize any display dependent 
information they may have. 

• construct the new display, the type of which is determined by 
event.raw Code. 

• After the display has been reset, we must set event.data to point to 
the new display object, and call the Event and Window managers so 
they can reinitialize themselves using the new display and coordinate 
system. 

// Wait for user response. 
EVENT_TYPE ccode; 
UI_EVENT event; 
do 
{ 

// Get input from the user. 
eventManager->Get(event); 
// Check for a screen reset message. 
if (event.type == S_RESETJDISPLAY) { 

Getting Started with OpenZinc Programming 



Program Design 

#if defined(ZIL_MSDOS) 
event.data = NULL; 
// Tell the managers we changed the display. 
windowManager->Event(event); 
eventManager->Event(event); 
delete display; 
if (event.rawCode == TDM_NONE) { 

display = new UI_GRAPHICSJDISPLAY; 
if (!display->installed) 
{ 
delete display; 
display = new UI_TEXT_DISPLAY; 

} 
} 
else 

display = new UI_TEXT_DISPLAY(event.rawCode); 

// Tell the managers we changed the display. 
event.data = display; 
eventManager->Event(event); 
ccode = windowManager->Event(event); 
windowManager->screenID = window->screenID; 

#endif } 

else 
ccode = windowManager->Event(event); 

} while (ccode != L_EXIT && ccode != S_NO_OBJECT); 

If we examine the CONTROL_WINDOW::OptionDisplay() member 
function and the code in the main event loop, we'll find we could have 
removed the OptionDisplay() function if we were to intercept all 
MSG__DISPLAY messages in the main loop. The reason we did not put the 
display code in the main loop is mainly an issue of consistency. Up until this 
point, we have let the control window and associated member functions han-
dle the program specific messages. In this case we are generating a system 
message from the display member function, then intercepting the request at 
the main level before letting the Window Manager process it. 

220 Getting Started with OpenZinc Programming 



Window options 

=•1 OpenZinc Application 1 H 
Control Window Event Help 

Control objects • 
Input objects • 
Selection objects • 

This item contains ZincApp's window options, initialized by the 
CONTROL_WINDOW constructor. Here's that part of the constructor. 

// Create the objects submenu. 
UIW_P0P_UP_ITEM *controlCbjects = new UIW_P0P_UP_ITEM("&Control objects"); 
*controlObjects 

+ new UIW_POP_UP_ITEM( "&Button window...", MNIFJCJMGS, BTF_N0_FLSGS, 
WDF_NO_FLAGS, (XOTROL_WINDOW::Message, MSG_BLTITm_WINDOW) 

+ new UIW_POP_UP_ITEM( "&Generic window...", M®T_N0_FLflGS, BTF_NO_FLAGS, 
WOF_NO_ELflGS, CXMROL_WINDCW::Message, MSGJ3ENERICJJIND0W) 

+ new UIW_P0P_UP_ITEM("&Icon window...", MNXF_NO_FLAGS, BTF_NO_FLAGS, 
WOF_NO_FLAGS, (XWIRCL_WXNDCW: :Message, MSGJKXJNJTO©OW) 

+ new UIW_P0P_UP_ITEM("&MDI window...", MNXF_NO_FLAGS, BTF_NO_FLAGS, 
W0F_N0_FLAGS, CONTROL_WINDOW::Message, MSG_MDI_WIND0W); 

UIW_POP_UP_ITEM *inputObjects = new UIW_P0P_UP_ITEM("&Input objects"); 
*inputObjects 

+ new UIW_POPJUP_ITEM("&Date window...", MNIF_NO_FLAGS, BIF_N0_FLAGS, 
VTOFJSDJFLAGS, ODNITOLJCTNDOW: rMessage, MSG_DAIE_WINDOW) 

+ new UIW_PQP_UP_ITEM( "SNurrber window...", MNTF_N0_FIA3S, KEFJCFLAGS, 
W0F_N0_FLAGS, (XOTRCL_WINDOW: :Message, MSGJttJMBER_WINDCW) 

+ new UIW_POPJJP_ITEM( "&String window...", MNIF_ND_FL£GS, BIF_NO_ELAGS, 
WOF_NO_FLSGS, CENTROLjraJDCW::Message, MSG_STRING_WINDCW) 

+ new UIW_P0P_UP_ITEM( "&Text window...", MNIF_NO_FLAGS, BTF_N0_FLAGS, 
WOF_NO_FLSGS, CmiROLJtflMXIW::Message, MSGJIEXTJWINDOW) 

+ new UIW_P0P_UP_ITEM( "&Time window...", MNIF_NO_FLAGS, EIF_NO_FLAGS, 
WOF_NO_FLAGS, Oim«DL_WINDCW::Message, MSG_TIME_WINDCW) ; 

UIW_POPJJP_ITEM *select£bjects = new UIW_PaPJJP_rEEI4("&Selecticxi objects"); 
*selectObjects 

+ new UIW_P0P_UP_ITEM( "&Carbo Box windcw...", MNIF_NO_FLAGS, 
BTF_NO_FLflGS, WOF_NO_FLAGS, (XtnROLJONDCW::Message, 
MSG_COMBO_BOX^WINDOW) 

+ new UIW_POP_UP_ITEM( "&List window...", MNIF_NO_FLflGS, EOF_NO_FLAGS, 
W0F_N0_FLAGS, C0NTR0L_WIND0W::Message, MSG_LIST_WINDOW) 

+ new UIW_P0P_UP_ITEM( "&Menu window...", MfTIF_lsD_FLAGS, BIF_NO_FLffiS, 
W0F_N0_FLAGS, C0NTR0L_WIND0W::Message, MSG_MENU_WINDOW) 

+ new UIW_P0P_UP_ITEM("&T00I Bar window...", MNIF_N0_FLAGS, 

Getting Started with OpenZinc Programming 



Program Design 

BTF_NO_FLAGS, W0F_N0_FLAGS, CONTROLWINDOW::Message, 
MSG_TOOL_BAR_WINDOW); 

// Attach the sub-window objects to the control window. 
*this 
+ new UIW_BORDER 
+ new UIW_MAXIMIZE_BUTTON 
+ new UIW_MINIMIZE_BUTTON 
+ new UIW_SYSTEM BUTTON(SYF_GENERIC) 
+ new UIW__TITLE( "OpenZinc Application") 
+ &(*new UIW_PULL_DOWN_MENU 

+ new UIW_PULL_DOWN_ITEM("&Control", WNF_N0_FLAGS, controlltems) 
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_N0_FLAGS, displaylterns) 
+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_N0_FLAGS) 

+ controlObjects 
+ inputObjects 
+ selectionObjects) 

+ new UIW_PULL_DOWN_ITEM("SEvent", WNF_N0_FLAGS, eventltems) 
+ new UIW_PULLJX)WN_ITEM("&Help", WNF_N0_FLAGS, helpltems)); 

220 Getting Started with OpenZinc Programming 



Window 
program flow 

What happens when the user selects the Window option? First, the control 
window executes steps one through four of the general program flow. At the 
fifth step, however, it calls the OptionsWindow() member function. 

CONTROL_WINDOW 
control objects 
input objects 

L © 
o [ 

7 
CONTROL_WINDOW::OptionWindow 

1. 

2. 

3. 

The UIW_POP_UP_ITEM::Event() function calls the 
CONTROL_WINDOW::Message() function. 

The CONTROL_WINDOW: :Message() function sends a request to 
remove the temporary display options menu by sending an 
S_CLOSETEMPORARY message through the system. 

Control returns to the main event loop. 

Getting Started with OpenZinc Programming 



Program Design 

4. eventManager->Get() gets two messages that the program generates. 
The first message it gets is S_CLOSE_TEMPORARY. 

5. The second message it gets is the window request of the selected menu 
item. This message is passed by the main loop to the Window Manager 
and is then dispatched by the Window Manager to 
CONTROL_WINDOW: :Event() since the control window is the front 
window on the screen. The control window evaluates event, type, which 
is, in this case a MSG_WINDOW message—resulting in the 
OptionWindow() member function being called. 

EVENT_TYPE CONTROL_WINDOW::Event(const UI_EVENT &event) 
{ 

// Process the event according to its type, 
if (ccode >= MSG_HELP) 

OptionHelp(event.type); // Help menu option selected, 
else if (ccode >= MSG_EVENT) 

OptionEvent(event.type); // Event menu option selected, 
else if (ccode >= MSG_WINDOW) 

OptionWindow(event.type); // Window menu option selected, 
else if (ccode >= MSG_DISPLAY) 

OptionDisplay(event.type); // Display menu option selected, 
else 

ccode = UIW_WINDOW::Event(event); // Unknown event. 
// Return the control code, 
return (ccode); 

} 

220 Getting Started with OpenZinc Programming 



CONTROL_WINDOW::OptionWindow 

The Opt ionWindow() member function evaluates the item's value, 
passed down through the item argument, to determine which type of win-
dow the user has requested. Then it calls the member function that con-
structs the appropriate window. Finally, it attaches the window to the 
Window Manager using the overloaded + operator. The following code 
shows how: 

void CONTROL_WINDOW::OptionWindow(EVENT_TYPE item) 
{ 

// Get the specified window. 
UI_WINDOW_OBJECT *object = NULL; 

Getting Started with OpenZinc Programming 



Program Design 

switch(item) 
{ 

case MSG_DATE_WINDOW: 
object = UIW_WINDOW::New("support.dat~WINDOW_DATE"); 
break; 

case MSG_GENERIC_WINDOW: 
object = UIW_WINDOW::New("support.dat-WINDOW GENERIC"); 
break; 

case MSG_IC0N_WIND0W: 
object = UIW_WINDOW::New("support.dat~WINDOW_ICON"); 
break; 

case MSG_LIST_WINDOW: 
object = UIW_WIND0W::New("support.dat~WINDOW_LIST"); 
break; 

case MSG_C0MB0_B0X_WIND0W: 
object = UIW_WIND0W::New("support.dat~WIND0W_C0MB0_B0X"); 
break; 

case MSG_MENU_WIND0W: 
object = UIW_WIND0W::New("support.dat-WIND0W_MENU"); 
break; 

case MSG_NUMBER_WINDOW: 
object = UIW_WIND0W::New("support.dat~WIND0W_NUMBER"); 
break; 

case MSG_STRING_WINDOW: 
object = UIW_WIND0W::New("support.dat~WIND0W_STRING"); 
break; 

case MSG_TEXT_WINDOW: 
object = UIW_WIND0W::New("support.dat~WIND0W_TEXT"); 
break; 

case MSG_TIME_WINDOW: 
object = UIW_WIND0W::New("support.dat~WIND0W_TIME"); 
break; 

case MSG_BUTTON_WINDOW: 
object = UIW_WIND0W::New("support.dat~WIND0W_BUTT0N"); 
break; 

case MSG_TOOL_BAR_WINDOW: 
object = UIW_WINDOW::New("support.dat~WINDOW_TOOL_BAR"); 
break; 

case MSG_MDI_WINDOW: 
object = UIW_WINDOW: :New(" support.dat~WINDOW_MDI"); 
break; 

} 
// Add the window object to the window manager, 
if (object) 

*windowManager + object; 

220 Getting Started with OpenZinc Programming 



The object variable is a UI_WINDOW_OBJECT pointer, not a 
UIW_WINDOW pointer. This generic declaration allows us to expand the 
program to attach other nonwindow objects, for example, an icon. 

Now the new window becomes the front window, which processes all subse-
quent events until the user requests a change. A description of the types of 
windows presented in this menu item follows: 

Generic. This window shows the basic window objects that are usually pro-
vided as default objects to a window. These objects include: 

• the window's border (UIW_BORDER), 

• the maximize button (UIW_MAXIMIZE_BUTTON), 

• the minimize button (UIW_MINIMIZE_BUTTON), 

• the system button (UIW_SYSTEM_BUTTON), and 

• the title bar (UIW_TITLE). 

Button. Shows standard buttons, radio buttons, check boxes, and bitmapped 
buttons. 

Combo box. Shows two combo box objects, one of which was implemented 
with string objects, and the other with bitmapped buttons. 

Date. Shows the many variations of the date class. 

Icon. Shows several types of icons that we can attach either to a parent win-
dow or to the screen. 

List. Shows a horizontal and vertical list. 

Menu. Shows pull-down menus. The source code shows you how to create 
and attach pull-down and pop-up items into pull-down menus. 

Number. This window shows several UIW_BIGNUM objects. 

String. This window shows several types of string objects that can be created 
with OpenZinc Application Framework. These objects include the basic 
UIW_STRING class, two types of UIW_FORMATTED_STRING class 
objects, and a multi-line text field, UIW_TEXT, that only occupies part of 
its parent window. 

Text. This window shows a full-window implementation of a UIW_TEXT 
object and an associated vertical scroll bar. 

Getting Started with OpenZinc Programming 



Program Design 

Time. This window shows the many variations that can be used with the 
ZIL_TIME class. 

Tool bar. This window shows a tool bar object that contains various window 
objects. 

Event options 
= | O p e n Z i n c Appl icat ion 
Control W i n d o w Event Help 

| Event moni tor 

This item contains ZincApp's event options, initialized by the 
CONTROLJWINDOW constructor. Here's that part of the constructor. 

static UI_ITEM eventltems[] = 
{ 

{ MSG_EVENT_MONITOR,VOIDF(CONTROL_WINDOW::Message), 
"&Event monitor"MNIF_NO_FLAGS }, 

{ 0, 0, 0 }// end of array 
}; 
// Attach the sub-window objects to the control window. 
*this 
+ new UIW_BORDER 
+ new UIW_MAXIMIZE_BUTTON 
+ new UIW_MINIMIZE_BUTTON 
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC) 
+ new UIW_TITLE("OpenZinc Application") 
+ &(*new UIW_PULL_DOWN_MENU 

+ new UIW_PULL_DOWN__ITEM("&Control", WNF_NO_FLAGS, controlltems) 
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS, displayltems) 
+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS) 

+ controlltems 
+ inputltems 
+ selectltems) 

+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventltems) 
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpltems)); 

220 Getting Started with OpenZinc Programming 



Event program 
flow 

What happens when the user selects the Event option? First, the control win-
dow executes steps one through four of the general program flow. At the 
fifth step, however, it calls the OptionsEvent() member function. 

Main event loop 

CONTROL_WINDOW 
H event monitor 

e o CONTROL_WINDOW::OptionEvent 

The UlW_POP_UP_ITEM::Event() function calls the 
CONTROL_WINDOW: :Message() function. 

The CONTROL_WINDOW: :Message() function sends a request to 
remove the temporary display options menu by sending an 
S_CLOSE_TEMPORARY message through the system. 

Control returns to the main event loop. 

Getting Started with OpenZinc Programming 



Program Design 

4. eventManager->Get() gets two messages that the program generates. 
The first message it gets is S_CLOSE_TEMPORARY. 

5. The second message received is MSG_EVENT, which the main loop 
passes to the Window Manager, which in turn passes it to 
CONTROL_WINDOW::Event(), since the control window is the front 
window on the screen. Then control window evaluates event.type—in 
this case the MSG_EVENT message—and calls the OptionEvent() 
member function. 

EVENT_TYPE CONTROL_WINDOW::Event(const UI_EVENT &event) { 

// Process the event according to its type, 
if (ccode >= MSG HELP) 

OptionHelp(event.type);// Help menu option selected, 
else if (ccode >= MSG_EVENT) 

OptionEvent(event.type);// Event menu option selected, 
else if (ccode >= MSG_WIND0W) 

OptionWindow(event.type);// Window menu option selected, 
else if (ccode >= MSG_DISPLAY) 

OptionDisplay(event.type);// Display menu option selected, 
else 

ccode = UIW_WINDOW::Event(event);// Unknown event. 
// Return the control code, 
return (ccode); 

} 

220 Getting Started with OpenZinc Programming 



The OptionEvent() member function creates the event monitor window 
and attaches it to the window manager. The following code shows how 
this is done. 

void CONTROL_WINDOW::OptionEvent(EVENT_TYPE item) 
{ 

// Create the event monitor and attach it to the window manager. 
*windowManager 

+ new EVENT_MONITOR; 
} 

Getting Started with OpenZinc Programming 



Program Design 

At this point the event monitor, which we encounter in the next section, 
becomes the front window of the application, and will process all subse-
quent events directly or indirectly. 

Monitoring In order to monitor events, we derived two classes, EVENT_MONITOR 
library events and ZINCAPP_WINDOW_MANAGER 

Event Monitor. The event monitor shows which messages the library is pro-
cessing. The Windows version of the event monitor window has five sec-
tions: 

• Message. The hex value of the Windows message. We could have imple-
mented a translation table that displayed the message in human-readable 
form. 

• wParam. The event's wParam value. 

• IParam. The event's IParam value. 

• Position. The event's Position value. 

• Last event. The interpreted value of the last event. This can be any OpenZinc 
event or logical event, or it could be a keyboard or mouse code. 

The class EVENT_MONITOR contains the implementation of this win-
dow, and ZINCAPP.HPP contains the definition of EVENTJVIONITOR. 
Its members are shown below: 

class EVENT_MONITOR : public UIW_WINDOW { 

public: 
EVENT_MONITOR(void); 
EVENT_TYPE Event (const UI_EVENT Seventh-

private : 
#if defined(ZIL_MSDOS) 

UIW_PROMPT *keyboard[3]; 
UI_EVENT kEvent; 
UIW_PROMPT *mouse[3]; 
UI_EVENT mEvent; 

#elif defined(ZIL_MSWINDOWS) 
UIW_PROMPT *windowsMessage[5]; 
MSG wMsg; 

#elif defined(ZIL_0S2) 
UIW_PROMPT *windowsMessage[5]; 
QMSG oMsg; 

#elif defined(ZIL_MOTIF) 
UIW_PROMPT *motifMessage[3]; 
XEvent xEvt; 

220 Getting Started with OpenZinc Programming 



#elif defined(ZIL_MACINTOSH) 
UIW_PROMPT *macintoshMessage[ 5 ]; 
EventRecord mEvent; 

#endif 
UIW_PROMPT *system; 
UI_EVENT sEvent; 

}; 

The event The EVENT_MONITOR derives from the base class UIWJWINDOW, 
monitor therefore inheriting the ability to receive message information, and giving us 

the ability to remove easily the event monitor window from the screen. 
When we attach the event monitor window to ZincApp's window manager, it 
receives all events that pass through the system—after the front window has 
processed the event, allowing the front window to process the event nor-
mally. 

If we were to derive the event monitor from UI_DEVICE as we did in the 
MACRO_HANDLER tutorial, it would receive only raw input information. 
By positioning ourselves in the window manager, we are able to see, not 
only raw events, but how an object interprets raw events. This allows us to 
see firsthand one of the benefits of OpenZinc, how OpenZinc objects handle events in 
the context of what the object knows how to do. 

=l Event moni tor • M * 

Message: 0200 

wPaiam: 0000 

IParam: 0000000c 

Position: 16 35 

Last event MSWindows 

For example, pressing the mouse button on the title bar produces a series of 
messages ending in "Move." Pressing the mouse button in a text field, how-
ever, produces the message "Begin mark." If we had derived 
EVENT_MONITOR from UI_DEVICE, we would see only a "mouse 
down" message. 

The EVENT_MONITOR::Event() function can receive two types of 
events . The first type is messages passed to the window during executioN. 
These messages would be passed to the window if it were the front window 

Getting Started with OpenZinc Programming 



Program Design 

on the screen, or if a mouse message overlapped the window's screen region. 
The second type of messages are sent to the event monitor after they have 
been processed by the window manager. In addition, these special events are 
packaged by the window manager into a new event, and in turn passed to the 
member function. The window manager packages these events this way: 

• event.type is the logical event returned by the receiving object. 

• event.rawCode is always OxFFFF if the event has already been passed to 
the front window. This special value lets us determine whether the origi-
nal message was intended for the event monitor window (if it is front 
window on the screen) or whether the event has already been passed 
through the system. 

• event.data is the original event that was passed through the system. 

EVENT_MONITOR: :Event() has four parts that check for normal, key-
board, mouse, and logical events, for all the environments ZincApp sup-
ports. 

1. The first part of EVENT_MONITOR::Event() sets up the event infor-
mation and determines whether the event window should interpret the 
event, or whether it should pass the event to UIW_WINDOW. 

EVENT_TYPE EVENT_MONITOR::Event(const UI_EVENT Sevent) 
{ 

// See if it is a normal event. 
if (event.rawCode != OxFFFF) 

return (UIW_WINDOW::Event(event)); 

2. In the second part, keyboard and kEvent, available only in DOS, contain 
information about the last key that was pressed. kEvent keeps track of the 
last event for optimization so that only those parts of the key that have 
changed will be updated. When the program calls EVENT_MONITOR-
::Event() routine, it changes these variables to reflect the new event, 
which it passes as an argument to the event monitor's Event() function. 
The code responsible for this change is shown below: 

EVENT_TYPE EVENT_MONITOR::Event(const UIEVENT Sevent) 
{ 

UIJSVENT *tEvent = (UI_EVENT *)event.data; 

// Check for new keyboard event. 
if (tEvent->type == E_KEY) 
{ 
char string[32]; 

220 Getting Started with OpenZinc Programming 



if (kEvent.rawCode != tEvent->rawCode) 

sprintf(string, "%04x", tEvent->rawCode); 
keyboard[0]->Information(SET_TEXT, string); 

if (kEvent.key.shiftState != tEvent->key.shiftState) 

sprintf(string, "%02x", tEvent->key.shiftState); 
keyboard[1]->Information(SET_TEXT, string); 

if (kEvent.key.value != tEvent->key.value) 

sprintf(string, "%c", tEvent->key.value); 
keyboard[2]->Information(SET_TEXT, string); 

kEvent = *tEvent; 
} 

3. In the third part, _mouse and mEvent, also available only in DOS, contain 
information about the last mouse event. They work just like the keyboard 
variables keyboard and kEvent, except that they maintain mouse informa-
tion. For optimization, mEvent keeps track of the last event, so that 
EVENT_MONITOR::Event() will update only those parts of the mouse 
event that have changed. When the program calls EVENT_MONITOR::-
Event(), it passes as an argument the changes in the event. Below is the 
code that does this: 

EVENT_TYPE EVENT_MONITOR::Event(const UI_EVENT &event) { 
UI_EVENT *tEvent = (UI_EVENT *)event.data; 

II Check for new mouse event. 
else if (tEvent->type == E_MOUSE) { 

char string[ 32 ]; 
if (mEvent.rawCode != tEvent->rawCode) 

sprintf(string, "%04x", tEvent->rawCode); 
mouse[0]->Information(SET_TEXT, string); 

if (mEvent.position.column != tEvent->position.column) 

sprintf(string, "%03d", tEvent->position.column); 
mouse[1]->Information(SET_TEXT, string); 

if (mEvent.position.line != tEvent->position.line) 

sprintf(string, "%03d", tEvent->position.line); 
mouse[2]->Information(SET_TEXT, string); 

Getting Started with OpenZinc Programming 



Program Design 

} 
mEvent = *tEvent; 

} 
4. The fourth part of EVENT_MONITOR: :Event() contains variables 

that keep track of events that the event monitor window receives. The 
difference between this part and the other parts is that this part can keep 
track of events for each operating environment OpenZinc supports, whatever 
that might be. For example, if the native operating environment is Win-
dows, it keeps track of Windows events; if the native operating environ-
ment is Macintosh, it keeps track of Macintosh events; and so forth. Here 
are those variables: 

• windowsMessage and wMsg contain the information from the last 
event that was received by the event monitor in the Windows envi-
ronment. 

• windowsMessage and oMsg contain the information from the last 
event that was received by the event monitor in the OS/2 environ-
ment. 

• motifMessage and xEvt contain the information from the last event 
that was received by the event monitor in the Motif environment. 

• macintoshMessage and mEvent contain the information from the last 
event that was received by the event monitor in the Motif environ-
ment. 

For optimization reasons, still other variables, wMsg, oMsg, xEvt, and 
mEvent, keep track of the last event for optimization so that only those 
parts of the event that have changed will be updated. When the program 
calls the EVENT_MONITOR::Event() routine, it changes these vari-
ables to reflect the new event, which it passes as an argument to the event 
monitor's Event() function. Below is the code responsible for this 
change in Windows: 

EVENT_TYPE EVENT_MONITOR::Event(const UI_EVENT Sevent) 
#elif defined(ZIL_MSWINDOWS) 
if (tEvent->type == E_MSWINDOWS) { 

MSG msg = tEvent->message; 
char string[32]; 
if (wMsg.message != msg.message) 
{ 

sprintf(string, "%04x", msg.message); 
windowsMessage[0]->Information(I_SET_TEXT, string); 

} 
if (wMsg.wParam != msg.wParam) 

220 Getting Started with OpenZinc Programming 



sprintf(string, "%04x", msg.wParam); 
windowsMessage[1]->Information(I_SET_TEXT, string); 

if (wMsg.IParam != msg.IParam) 

sprintf(string, "%08x", msg.IParam); 
windowsMessage[2]->Information(I_SET_TEXT, string); 

if (wMsg.pt.x != msg.pt.x)_ 

sprintf(string, "%d", msg.pt.x); 

windowsMessage[3]->Information(I_SET_TEXT, string); 

if (wMsg.pt.y != msg.pt.y) 

sprintf(string, "%d", msg.pt.y); 

windowsMessage[4]->Information(I SET TEXT, string); 

wMsg = msg; 
} 

5. _system and sEvent contain information about the last interpreted event 
that was returned by the window object. These variables work just like 
the mouse variables mouse and mEvent except that the information is 
maintained for the logical or system event. The variable sEvent keeps 
track of the last event for optimization so that only changes in the event 
cause the event field to be updated. When program calls 
EVENT_MONITOR: :Event(), it changes these variables to reflect the 
new event, by passing it as an argument to the event monitor's Event() 
function. Below is a partial list of the event/string pair table: 
EVENT_TYPE EVENT_MONITOR::Event(const UI_EVENT &event) { 

UI_EVENT *tEvent = (UI_EVENT *)event.data; 

// Declare the event type/name pairs, 
static struct EVENT_PAIR 

{ 
ZIL_LOGICAL_EVENT type; 
char *name; 

} eventTable[] = { 
// Raw events. 
{ E_MSWINDOWS,"MSWindows" }, 
{ E_0S2,"OS/2" }, 
{ E_MOTIF,"Motif" }, 
{ E_MACINTOSH,"Macintosh" }, 
{ E_KEY,"Key" }, 

Getting Started with OpenZinc Programming 



Program Design 

{ E_MOUSE,"Mouse" }, 
{ E_CTJRSOR,"Cursor" }, 
// System events. 
{ S_ERROR,"Error" }, 
{ S_UNKNOWN,"Unmapped Event" }, 
{ S_N0_0BJECT,"No object" }, 

// Logical events. 
{ L_EXIT,"Exit" }, 
{ L_VIEW,"View" }, 
{ L_SELECT,"Select" }, 

The ZincApp The event monitor window we just described receives all interpreted mes-
window manager sages by attaching itself to the OpenZinc Window Manager class, ZINCAPP_-

WINDOW_MANAGER. This class is the second part of what makes it 
possible for us to intercept events without disrupting their normal flow. 
ZINCAPP.HPP contains the definition of the ZINCAPP-
_WINDOW_MANAGER class, shown below: 

class ZINCAPP_WINDOW_MANAGER : public UI_WINDOW_MANAGER { 

public: 
ZINCAPP_WINDOW_MANAGER(UI_DISPLAY *display, 

UI_EVENT_MANAGER *eventManager) : 
UI_WINDOW_MANAGER(display, eventManager, 

ZINCAPP_WINDOW_MANAGER::ExitFunction) { } 
virtual EVENT_TYPE Event(const UI_EVENT Sevent); 

private: 
static EVENT_TYPE ExitFunction(UI_DISPLAY *display, 

UI__EVENT_MANAGER *eventManager, UI_WINDOW_MANAGER 
*windowManager); 

}; 
Here some information about ZINCAPP_WINDOW_MANAGER. 

• UI_WINDOW_MANAGER is the base class. This allows us to get all 
interpreted messages before they pass to the main control loop, and to 
send the event information to the event monitor window, if it exists. 

• ZINCAPP_WINDOW_MANAGER() is the ZincApp window man-
ager constructor. It calls the base UI_WINDOW_MANAGER with the 
display and eventManager supplied by its arguments but also provides an 
exitFunction pointer that is the ZINCAPP_WINDOW_MANAGER-
::ExitFunction() static member function. The ZincApp window man-

220 Getting Started with OpenZinc Programming 



ager class is constructed in the main section of our program, just the way 
a normal window manager would be constructed. The code below shows 
how: 

// Initialize the ZincApp window manager and add the control 
window. 

ZINCAPP_WINDOW_MANAGER *windowManager = 
new ZINCAPP_WINDOW_MANAGER(display, eventManager); 

UI_WINDOW *window = new CONTROL_WINDOW; 
*windowManager 
+ new window; 

• Event(), which processes the event information, contains two major 
parts. The first calls UIJWINDO W JV1ANAGER: :Event(), so that it 
can dispatch the message to the proper window. 

EVENT_TYPE ZINCAPP_WINDOW_MANAGER::Event(const UI_EVENT Sevent) { 

// Allow the base window manager to process the event. 
EVENT_TYPE ccode = UI_WINDOW_MANAGER::Event(event); 

The second parts sends the interpreted message to the event monitor win-
dow, if it exists. It determines if it should by looking at the object's 
user Flags. If EVENT_MONITOR::Event() has set the flag to 
MSG_EVENT_MONITOR, and if the event type is not S_RESET_DIS-
PLAY, it modifies the event. When modified, event.type contains the logi-
cal code, event.rawCode contains the value OxFFFF, and event.data 
points to the raw event. Then the event function sends the message to the 
device. 

// Send the event to any event monitor windows. 
for (UI_WINDOW_OBJECT *object = First(); object; 

object = object->Next()) 
if (object->userFlags == MSG_EVENT_MONITOR && event.type != 

S_RESET_DISPLAY) 
{ 
UI_EVENT tEvent(event.type, OxFFFF); 
tEvent.data = (void *)&event; 
object->Event(tEvent); 

} 
// Return the control code. 
return (ccode); 

Getting Started with OpenZinc Programming 



Program Design 

ZINCAPP_WINDOW_MANAGER also provides a way to exit the pro-
gram through the static member function ExitFunction( ), which displays 
the modal exit window we saw earlier in the chapter. 

OpenZinc Appl icat ion 

This will close the ZincApp tutorial. 

L J 1 fiance! j 

If the user selects OK, an L_EXIT message passes through the system, and 
program stops. Otherwise, the window manager removes the window from 
the screen, and program flow continues normally. 

Help options 

=| OpenZinc Appl icat ion | • | * 
Control W i n d o w Event Help 

Keyboard 
Mouse 
Commands 
Procedures 
Objects 
Using help 

Keyboard 
Mouse 
Commands 
Procedures 
Objects 
Using help 

About . . . 

This item contains ZincApp's help options, initialized by the 
CONTROL_WINDOW constructor. Here's that part of the constructor.: 

// Help menu items. 
static UI_ITEM helplterns[] = { 

{ MSG_HELP_KEYBOARD,ZIL_VOIDF(Message),"&Keyboard", 
MNIF_N0_FLAGS }, 

{ MSG_HELP_MOUSE,ZIL_V0IDF(Message),"&Mouse", 
MNIF_NO_FLAGS }, 

{ MSG_HELP_COMMANDS,ZIL_VOIDF(Message),"SCommands", 
MNIF_NO_FLAGS }, 

{ MSG_HELP_PROCEDURES,ZIL_V0IDF(Message),"&Procedures", 
MNIF_NO_FLAGS }, 

{ MSG_HELP_OBJECTS,ZIL_VOIDF(Message),"^Objects", 

220 Getting Started with OpenZinc Programming 



MNIF_NO_FLAGS }, 
{ MSG_HELP_HELP,ZIL_VOIDF(Message),"&Using help", 
MNIF_NO_FLAGS }, 

{ 0, ZIL_VOIDF(0),"",MNIF_SEPARATOR }, 
{ MSG_HELP_ZINCAPP,ZIL_VOIDF(About),"&About ...", 
MNIF_NO_FLAGS }, 

{ 0, 0, 0, 0 }// End of array. 

// Attach the menu and support objects to the control window. 
*this 

+ new UIW_BORDER 
+ new UIW_MAXIMIZE_BUTTON 
+ new UIW_MINIMI ZE_BUTTON 
+ &(*new UIW_SYSTEM_BUTTON(SYF_GENERIC) 

+ new UIW_POP__UP_ITEM("About ZincApp. ..", MNIF__NO_FLAGS, 
BTF_NO_TOGGLE | BTF_NO_3D, 
WOF_SUPPORT_OBJECT, About, MSG_HELP_ZINCAPP)) 

+ new UIW_TITLE("OpenZinc Application") 
+ &(*new UIW_PULL_DOWN_MENU 

+ new UIW_PULL_DOWN_ITEM("SControl", WNF_NO_FLAGS, 
controlltems) 

#if defined(ZIL_MSDOS) 
+ new UIW_PULL_DOWN_ITEM("SDisplay", WNF_NO FLAGS, 

displayltems) 
#endif 

+ &(*new UIW__PULL_DOWN_ITEM("SWindow", WNF_NO_FLAGS) 
+ controlObjects 
+ inputObjects 
+ selectObjects) 

+ new UIW_PULLJX)WN_ITEM("SEvent", WNF_NO_FLAGS, 
eventIterns) 

+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, 
helpltems)) 

+ new UIW_ICON(0, 0, "minlcon", "Zincapp", 
ICF_MINIMIZE_OBJECT); 

Getting Started with OpenZinc Programming 



Program Design 

Help program 
flow 

What happens when the user selects the Help option? First, the control win-
dow executes steps one through four of the general program flow. At the 
fifth step, however, it calls the OptionHelp() member function. 

CONTROL_WINDOW 

® 

1. The UIW_POP_UP_ITEM::Event() function calls the 
CONTROL_WINDOW: :Message() function. 

2. The CONTROL_WINDOW::Message() function sends a request to 
remove the temporary display options menu by sending an 
S_CLOSE_TEMPORARY message through the system. 

3. Control returns to the main event loop. 

220 Getting Started with OpenZinc Programming 



4. eventManager->Get() gets two messages that the program generates. 
The first message it gets is S_CLOSE_TEMPORARY. 

5. The second message received is the help message determined by the 
selected menu item. This message is passed by the main loop to the Win-
dow Manager, then is dispatched by the Window Manager to CON-
TROL_WINDOW::Event() since the control window is the front win-
dow on the screen. The control window evaluates event.type—in this 
case a MSG_HELP message—which results in the OptionHelp() mem-
ber function being called. The code responsible for this control is shown 
below: 

EVENT_TYPE CONTROL_WINDOW::Event(const UI_EVENT Sevent) 
{ 
EVENT__TYPE ccode = event.type; 

// Process the event according to its type, 
if (ccode >= MSGHELP) 

OptionHelp(event.type);// Help option, 
else if (ccode >= MSG_EVENT) 

OptionEvent(event.type);// Event option, 
else if (ccode >= MSG_WINDOW) 

OptionWindow(event.type);// Window option. 
else if (ccode >= MSG_DISPLAY) 

OptionDisplay(event.type);// Display option. 
else 

ccode = UIW__WIND0W::Event(event);// Unknown event. 
// Return the control code. 
return (ccode); 

} 

Getting Started with OpenZinc Programming 



Program Design 

CONTROLJ/VIN DO W:: Option Hel p 

6. The OptionHeIp() member function evaluates the item's value (passed 
down through the item argument) to determine which type of help con-
text has been requested. It then sends the help request to the help system 
by calling DisplayHelp(). The following code shows how this is done: 

void CONTROL_WINDOW::OptionHelp(EVENT_TYPE item) 
{ 

// Declare the help message/context pairs. 
static struct HELP_PAIR { 

int itemValue; 
USHORT helpContext; 

220 Getting Started with OpenZinc Programming 



} helpTable[] = 
{ 

{ MSG_HELP__KEYBOARD, HELP_KEYBOARD }, 
{ MSG_HELP_MOUSE,HELP_MOUSE }, 
{ MSG_HELP_COMMANDS,HELP_COMMANDS }, 
{ MSG_HELP_PROCEDURES,HELP_PROCEDURES }, 
{ MSG_HELP_OBJECTS,HELP_OBJECTS }, 
{ MSG_HELP_HELP,HELP_HELP }, 
{ MSG_HELP_ZINCAPP,HELP_GENERAL }, 
{ 0, 0 }// End of array. 

}; 
// Get the help context then call the help system. 
USHORT helpContext = NO_HELP_CONTEXT; 
for (int i = 0; helpTable[i].itemValue; i++) 

if (item == helpTable[i].itemValue) { 

helpContext = helpTable[i].helpContext; 
break; 

} 
helpSystem->DisplayHelp(windowManager, helpContext); 

} 
Once DisplayHelp() is called, it attaches the help window to the Win-
dow Manager. For example, the help request MSG_HELP_ZINCAPP 
brings up a help window: 

<=•[ OpenZinc Appl icat ion [ H -
Welcome to the OpenZinc Application program. This sample program 
provides an introduction to the various components found in the 
library. Use the mouse to select an item from the main menu or press 
the <Alt> key in combination with the first letter of the item. 

Jt 

• 

Here the help window becomes the front window of the application, and 
processes events until the user requests a new window. 

The help window is a normal, not modal, window, and so the user can 
select other windows while the help window is up. In addition, OpenZinc 
defines only one help window for an application. If the help window is 
already present, or if it has been moved and sized by a previous help 
request, OpenZinc presents the window in its last position with the new help 
information shown in its title and text fields. 

Getting Started with OpenZinc Programming 



Program Design 

General library In addition to the help information provided through the main control menu, 
help the user can access context sensitive help by pressing a help key during the 

application. Each ZincApp window has a predefined help context, specified 
when the window is constructed. For example, the help context of the main 
control window is HELP_MAIN_CONTROL. The code below shows how: 

CONTROL_WINDOW::CONTROL_WINDOW(void) : 
UIW_WINDOW(0, 0, 52, 13, WOF_NO_FLAGS, WOAF_LOCKED, 
HELP_MAIN_CONTROL) 

{ 
} 

Generally, UI_WINDOW_OBJECT::Event() also provides access to the 
help system in the same way. After the user presses the <F1> key, the Win-
dow Manager sends the message to the front window. If the window has a 
help context, the Window Manager calls the help system with that help con-
text. If the user presses the <F1> key when the control window is active, the 
Window Manager would request the HELP_MAIN_CONTROL help context. 
Otherwise, the Window Manager can request general help by sending NO_-
HELPjCONTEXT to the helpSystem->DisplayHelp() function. The help 
system receives this message and replaces it with the general help specified 
at the time when the help system was constructed. In ZincApp, general help 
context is HELP_GENERAL. 

// Initialize the help and error systems. 
UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM; 
UI_WINDOW_OBJECT::helpSystem = new UI_HELP_WINDOW_SYSTEM("support", 

windowManager, HELP_GENERAL); 

Structured programming—in a word, don \ 

Some OpenZinc programmers use structured programming techniques. If we 
rewrote ZincApp using those techniques, we would assign each menu item a 
function, which the program would execute when the user selected an item. 
This is a cumbersome and inefficient technique for writing programs in a 
event-driven framework, for reasons we will learn in a moment. 

220 Getting Started with OpenZinc Programming 



In order to demonstrate that structured programming in an event-driven 
environment has serious drawbacks, let's hypothetically revise ZincApp. We 
could rewrite the Help options in the CONTROL_WINDOW constructor 
in a structured manner, so that each option would call specific help func-
tions, rather than pass an event to an object that contained a help member 
function. Remember, ZincApp contains none of this code—this is merely a 
conceptual alternative, designed to demonstrate a concept. 

C0NTR0L_WINDOW::CONTROL_WINDOW(void) : 
UIW_WINDOW(0, 0, 52, 13, WOF_NO_FLAGS, WOAF_LOCKED) 

{ 
extern EVENT_TYPE HelpKeyboard (UI_WINDOW_OBJE!Cr *itan, UI_EVENT &event, 

EVENT_TYPE ccode); 
extern EVENT_TYPE HelpMouse (UI_WINDOW_OBJECT *item, UI_EVENT Sevent, 

EVENT_TYPE ccode); 
extern EVENT_TYPE HelpCcnmands (UI_WXNDCW_OBJECT *item, UI_EVEOT &event, 

EVENTJTYPE ccode); 
extern EVENTJTYPE HelpProcedures(UI_WINDOW__OBJECT *item, 

UI_EVENT Sevent, EVENTJTYPE ccode); 
extern EVENT_TYPE HelpHelp(UIJTOTOWj3BJECT *item, UI_EVENT &event, 

EVENTJTYPE ccode); 
extern EVENT_TYPE HelpZincApp(UIjra3SIDCWjDBJECT *itan, UI_EVENT &event, 

EVENT_TYPE ccode); 
static UI_ITEM helpltems[] = { 

{ MSG_HELP_KEYBOARD, VOIDF(C0NTR0L_WIND0W::Message), 
"SKeyboard", MNIF_NO_FLAGS }, 
{ MSG_HELP_MOUSE, VOIDF(C0NTR0L_WIND0W::Message), 

"&Mouse", MNIF_NO_FLAGS }, 
{ MSG_HELP_COMMANDS, VOIDF(CONTROL_WINDOW::Message), 

" ScCommands", MN I F_N0_FLAG S }, 
{ MSG_HELP_PROCEDURES, VOIDF(C0NTR0L_WIND0W::Message), 

"&Procedures", MNIF_NO_FLAGS }, 
{ MSG_HELP_OBJECTS, VOIDF(CONTROL_WINDOW::Message), 

"SObjects", MNIF_NO_FLAGS }, 
{ MSG_HELP_HELP, VOIDF(CONTROL_WINDOW::Message), 

"&Using help", MNIF_N0_FLAGS }, 
{ 0, VOIDF(0), "", MNIF_SEPARATOR }, 
{ MSG_HELP_ZINCAPP, VOIDF(About), "&About ...", 
MNIF_NO_FLAGS }, { 0, 0, 0, 0 }// End of array. 

}; 
} 

Getting Started with OpenZinc Programming 



Program Design 

In our hypothetical revision, each menu item would have a function that per-
formed a particular operation. To do this, we would define functions for each 
of the menu items specified in the main control window. Here's an example 
of how we could write the HelpKeyboard() function. 

EVENT_TYPE HelpKeyboard(UI_WINDOW_OBJECT *item, UI_EVENT &event, 
EVENT_TYPE ccode) 

{ 
item->helpSystem->DisplayHelp(item->windowManager, 

HELP_KEYBOARD); 
} 

While our hypothetical revision works, it has serious drawbacks. 

1. Using structured programming techniques results in inefficiency. In the 
help example, it took seven functions to do the work that the CON-
TROL, WINDOW: :OptionHelp( ) function does in one. This wastes 
compiler time and executable space, making our applications perform 
more slowly. 

2. Using structured programming techniques in an event-driven architecture 
results in confusing code. Since event-driven architecture works best 
with object-oriented programming techniques, we should stick to writing 
object-oriented programs. 

3. Using structured programming techniques makes us duplicate much of 
what OpenZinc has already accomplished. Since OpenZinc has an extensive library 
of objects and event-handling routines, embedding functions like we've 
done negates the advantages of object-oriented structure, among which 
are elegant design and smaller code size. Using structured techniques 
increases the amount of time and effort involved in creating and debug-
ging programs. 

Because of these reasons, OpenZinc recommends that we eschew structured pro-
gramming techniques in writing our programs. 

220 Getting Started with OpenZinc Programming 



Conclusion 

We've reached the end of Getting Started with OpenZinc Programming. We now 
know enough about OpenZinc to begin writing complex applications that run on 
nearly every operating environment in the world—all with one source code 
file, using objects native to each of those operating environments. OpenZinc is 
sure you'll enjoy using the Application Framework—after all, we have as 
much flexibility as possible, full use of the advanced features of C++, and 
can use in our interfaces any modern language used anywhere in the world 
today. 

Have fun! 

Getting Started with OpenZinc Programming 



Program Design 

268 Getting Started with OpenZinc Programming 



Appendix A Compiler 
Considerations 

This appendix describes how to compile your applications with OpenZinc Appli-
cation Framework. 

When building your applications, we recommend using the same switch set-
tings that were used to compile the OpenZinc Application Framework libraries. 
These settings are found in the appropriate library makefiles in the 
ZINCVSOURCE directory. 

Getting Started with OpenZinc Programming 



Compiler Considerations 

Here is a complete list of all libraries and what they contain. Libraries for a 
particular compiler are located in the OpenZinc\LIB\ compiler directory (except 
for Motif, Macintosh, and NEXTSTEP). 

• DOS_ZIL.LIB. Real-mode DOS library. 

• D16_ZIL.LIB. 16-bit DOS library. 

• D32_ZIL.LIB. 32-bit DOS library. 

• DOS_GFX.LIB. DOS real-mode UI_GRAPHICS_DISPLAY. 

• D16_GFX.LIB. DOS UI_GRAPHICS_DISPLAY for 16 bit DOS 
extender. 

• D32_GFX.LIB. DOS UI_GRAPHICS J3ISPLAY for 32 bit DOS 

extender. 

• WIN_ZIL.LIB. MS Windows library. 

• WNT_ZIL.LIB. MS Windows NT library. 

• OS2_ZIL.LIB. IBM OS/2 library. 

• BC_LGFX.LIB. Borland-specific GFX graphics library. 
• BC_16GFX.LIB. Borland-specific GFX graphics library for 16-bit DOS 

extender. 

• DOS_BGI.LIB. DOS UI_BGI_DISPLAY. 

• DOS_ZILO.LIB. Borland DOS overlay library. 

• MS_LGFX.LIB. Microsoft-specific GFX graphics library. 

• MS_16GFX.LIB. Microsoft-specific GFX graphics library for 16-bit 
DOS extender. 

• MS_32GFX.LIB. Microsoft-specific GFX graphics library for 32-bit 
DOS extender. 

• DOS_MSC.LIB. DOS UI_MSC_DISPLAY. 

• D16_MSC.LIB. DOS UI_MSC_DISPLAY for 16-bit DOS extender. 

• D32_MSC.LIB. DOS UI_MSC_DISPLAY for 32-bit DOS extender. 

• SC_LGFX.LIB. Symantec-specific GFX graphics library. 

• SC_16GFX.LIB. Symantec-specific GFX graphics library for 16-bit 
DOS extender. 

• SC_32GFX.LIB. Symantec-specific GFX graphics library for 32-bit 
DOS extender. 

• SCJLGFXV.LIB. Symantec-specific DOS overlay GFX graphics 

270 Getting Started with OpenZinc Programming 



library. 

• DOS_ZILV.LIB. Symantec DOS overlay library. 

• DOS_GFXV.LIB. Symantec DOS overlay UI_GRAPHICS_DISPLAY. 

• D32_WCC.LIB. DOS UI_WCC_DISPLAY for 32-bit DOS extender. 

• WC_32GFX.LIB. Watcom-specific GFX graphics library for 32-bit 
DOS extender. 

• lib_mtf_zil.a. OSF/Motif library. 

• lib_crs_zil.a. Curses library. 

• lib_nxt_zil.a. NEXTSTEP library. 

Borland 
This section describes how to use Borland compilers with OpenZinc. For more 
complete details on the Borland compilers, see your Borland User's Guide. 

Makef i les— When building applications using a makefile, your TURBOC.CFG and 
DOS, Windows, TLINK.CFG files must be set to include paths to both the Borland and the 
OS/2 OpenZinc libraries and include files. A typical TURBOC.CFG file might look 

like this: 

-I.;C:\OpenZinc\INCLUDE;C:\BORLANDC\INCLUDE 
-L.;C:\OpenZinc\LIB\BTCPP400;C:\BORLANDC\LIB 

A typical TLINK.CFG might look like this: 

-L.;C:\OpenZinc\LIB\BTCPP400;C:\BORLANDC\LIB 

Any of the example or tutorial makefiles can be used as a skeleton for creat-
ing your own makefiles. It is important that the switches used to compile the 
OpenZinc libraries be used when compiling your applications. Of particular 
importance are the -x and -RT switches. These control the enabling of 
exception handling and the enabling of run-time type checking, respectively. 
The OpenZinc libraries are compiled with these options turned off. If any modules 
in your application, including the OpenZinc libraries, don't match the other mod-
ules in your application with regard to these options, or your application will 
likely crash. 

Getting Started with OpenZinc Programming 



Compiler Considerations 

Borland 4.0 To compile DOS or Windows applications in the IDE, do the following: 

IDE-DOS, 1- Select Project I New project. Windows r j 
2. Enter the project directory and name. 

3. Choose the target platform. 

4. Choose the large memory model. 
5. Make sure the Runtime library is selected. If you're building a DOS 

application using BGI, select the BGI library, as well. OpenZinc does not 
require the other libraries. 

6. If you're building a Windows application, select the Static option. 

7. Select Options I Project. 
8. Select the Directories topic. Enter the directories for the Borland and 

OpenZinc include and library directories. 

9. Select the C++ Options topic and open the Exception handling/RTTI 
sub-topic. Turn off the Enable exceptions option and the Enable run-
time type information option. 

10. Place the necessary source and library files in the project. 

11. Select Project I Build all. 

Borland 1.5 To compile an OS/2 application in the IDE, do the following: 
IDE OS/2 1. Select Project |NEW project. 

2. Enter the project directory and name. 

3. Select Project I View Settings. 

4. Select the Directories page. Enter the directories for the Borland and 
OpenZinc include and library directories. 

5. Select Project I Add item. 

6. Place the necessary source and library files in the project. 

7. Select Compile I Make. 

272 Getting Started with OpenZinc Programming 



Microsoft 

Getting Started with OpenZinc Programming 273 

This section describes how to use Microsoft compilers with OpenZinc. For more 
complete details on the Microsoft compilers, see your Microsoft User's 
Guides. 

Makef i les— When building applications using a makefile, your LIB and INCLUDE envi-
DOS, W i n d o w s ronment variables must be set to include paths to both the Microsoft and the 

OpenZinc libraries and include files. A typical LIB environment variable might 
look like this: 

LIB=.;C:\OpenZinc\LIB\MVCPP150;C:\VISUALC\LIB 

A typical INCLUDE environment variable might look like this: 

INCLUDE=.;C:\OpenZinc\LIB\MVCPP150;C:\VISUALC\INCLUDE 

The easiest way to set theses environment variables is in your 
AUTOEXEC.BAT file. 

Any of the example or tutorial makefiles can be used as a skeleton for creat-
ing your own makefiles. It is important that the switches used to compile the 
OpenZinc libraries be used when compiling your applications. 

Visual To compile DOS or Windows applications in the Visual Workbench, do the 
Workbench— following: 
DOS, Windows 1. Select ProjectI New. 

2. Enter the executable name. 

3. Set the Project Type. 

4. Add files to the project. 

5. Select Options I Project 

6. Choose the Compiler button 

7. Under Code Generation, set CPU to 8086/8088. 

8. Under Memory Model, set Model to Large. 

9. Choose the Linker button. 

10. Under Input, turn on Prevent Use of Extended Dictionary. 

11. Under Memory Image, set Max. Number of Segments to 256. 

12. If compiling a DOS application, under Input, add graphics to Libraries. 

13. If compiling a Windows application and the .DEF file has a STACK 
entry, then under Memory Image remove the entry in Stack Size. 



Compiler Considerations 

Due to the way Microsoft handles dependencies in the Visual Workbench, it 
may be necessary to comment out some #include directives in the OpenZinc 
header files even though these lines should be pre-compiled out. If you get 
errors that the compiler cannot open some NEXTSTEP or OSF/Motif header 
files, then comment out the offending line(s). 

Symantec 
This section describes how to use Symantec compilers with OpenZinc. For more 
complete details on the Symantec compilers, see your Symantec Compiler 
and Tools Guide. 

Makefi les— When building applications using a makefile, your LIB and INCLUDE envi-
DOS, Windows ronment variables must be set to include paths to both the Symantec and the 

OpenZinc libraries and include files. A typical LIB environment variable might 
look like this: 

LIB=.;C:\OpenZinc\LIB\SCCPP610;C:\SC\LIB 

A typical INCLUDE environment variable might look like this: 

INCLUDE=.;C:\OpenZinc\LIB\SCCPP610;C:\SC\INCLUDE 

The easiest way to set theses environment variables is in your 
AUTOEXEC.BAT file. 

Any of the example or tutorial makefiles can be used as a skeleton for creat-
ing your own makefiles. It is important that the switches used to compile the 
OpenZinc libraries be used when compiling your applications. 

274 Getting Started with OpenZinc Programming 



Symantec 6.1 
IDDE—DOS, 
Windows 

To compile DOS or Windows applications in the IDDE, do the following: 

1. Select Project I New 
2. Place the necessary source and library files in the directory. 

3. Select Options I Project 

4. Select the target platform. 

5. Select Options I Compiler I Memory Model 

6. Select Large. 
7. Select Options I Directories. 

8. Enter the directories for the Symantec and OpenZinc include and library direc-
tories. 

Watcom 
This section describes how to use Watcom compilers with OpenZinc. For more 
complete details on the Watcom compilers, see your Watcom C/C++ User's 
Guide. 

Makefi les— When building applications using a makefile, your LIB and INCLUDE envi-
DOS, Windows, ronment variables must be set to include paths to both the Watcom and the 
OS/2 OpenZinc libraries and include files. A typical LIB environment variable might 

look like this: 

LIB=.;C:\OpenZinc\LIB\WCCPP;C:\WATC0M\LIB386;C:\WATC0M\LIB386\WIN 

A typical INCLUDE environment variable might look like this: 

INCLUDE=.;C:\OpenZinc\LIB\WCCPP;C:\WATCOM\H;C:\WATCOM\H\WIN 

The easiest way to set these environment variables is in your 
AUTOEXEC.BAT file 

Any of the example or tutorial makefiles can be used as a skeleton for creat-
ing your own makefiles. It is important that you use the switches for compil-
ing the OpenZinc libraries when compiling your applications. 

Getting Started with OpenZinc Programming 275 



Compiler Considerations 

To compile DOS, Windows, or OS/2 applications in the IDE, do the follow-
ing: 
1. Select Project I New project. 

2. Enter the project directory and name. 

3. Select Open. 
4. Choose the target platform from the dialog. 

5. Select Sources I New source. Place the necessary source and library files 
in the project. 

6. Select Options I C++ compiler switches. 

7. Select the File option switches. Enter the directories for the Watcom and 
OpenZinc include and library directories. 

8. Select Targets I Make. 

IBM 

This section describes how to use IBM compilers with OpenZinc. For more com-
plete details on the IBM compilers, see your IBM manuals. 

Makefiles—OS/2 When building applications using a makefile, your LIB and INCLUDE envi-
ronment variables must be set to include paths to both the IBM and the OpenZinc 
libraries and include files. A typical LIB environment variable might look 
like this: 

LIB=.;C:\OpenZinc\LIB\SCCPP610;C:\IBM\LIB;C:\TOOLKT21\0S2LIB 

A typical INCLUDE environment variable might look like this: 

INCLUDE=.;C:\OpenZinc\LIB\SCCPP610;C:\IBM\INCLUDE;C:\T00LKT21\OS2H 

The easiest way to set theses environment variables is in your 
AUTOEXEC.BAT file 

Any of the example or tutorial makefiles can be used as a skeleton for creat-
ing your own makefiles. It is important that the switches used to compile the 
OpenZinc libraries be used when compiling your applications. 

Watcom 10.0 
IDE—DOS, 
Windows, OS/2 

276 Getting Started with OpenZinc Programming 



WorkFrame/2 For details on using IBM's WorkFrame/2 development environment, see the 
READ.ME file or your IBM manuals. 

Macintosh 
These Symantec projects are for compiling OpenZinc applications on Macintosh: 

• Mac_ZILl 

• Mac_ZIL2 

• Mac_ZIL3 

• Mac_ZIL4 

• Mac_ZIL5 

• Mac_ZIL6 

• Mac_ZIL7 

• Mac_ZIL8 

• Mac_ZIL9 

• Mac_ZIL10 

• UI_JumpTables 

• UI_Application 

• ZIL_Storage 

• Mac_ZIL.rsrc 

Apple's universal headers must be used with OpenZinc applications. These head-
ers are included in the Universal Headers folder in the THINK tree. Consult 
your Symantec documentation for instructions. 

THINK Project Each tutorial program has a sample project file that may be used as a tem-
Manager (TPM) plate for other programs. Before using the project file, you must make 

aliases of the SCCPP700 Include folder and the SCCPP700 Library folder. 
These aliases must be placed in the Alias folder within the TPM tree. Con-
sult your Symantec User's Guide for help. 

To compile applications for Macintosh with TPM, do the following: 

1. Select Edit I Options I THINK Project Manager. 

Getting Started with OpenZinc Programming 277 



Compiler Considerations 

2. Select Preferences. 

3. Choose Optimize monomorphic methods. 

4. Select Extensions. 

5. Make the following entries in the table. 

.cpp => SymantecC++• 

.rsrc => Resource Copier 
6. Select Edit I Options I Symantec C++. 

7. Select Language Settings. 

8. Choose Relaxed ANSI conformance. 

9. Choose Read each header file once. 

10. Select Compiler Settings. 

11. Choose Align to 2 byte boundary. 

12. Select Debugging. 

13. Choose Use function calls for inlines. 

14. Select Prefix. 

15. Type the following line. 

#include <ui_win.hpp> 

Each of the Mac_ZIL* projects must be added to its own segment within 
your project, since the Macintosh limits code segments to 32K. You must 
also include within your project the following Symantec projects: 

• CPlusLib 

• MacTraps 

• ANSI++ 

• unix++. 

Motif 
After installing OpenZinc on your system, run the INSTALL utility. It will ask 
you a number of questions concerning your system's configuration and will 
then configure your OpenZinc installation for your environment. Once this is 

278 Getting Started with OpenZinc Programming 



complete all your OpenZinc makefiles will be ready for use in your environment. 
See the MOTIF.TXT file if you need more details on compiling OpenZinc for 
Motif. 

Curses 
After installing OpenZinc on your system, run the INSTALL utility. It will ask 
you a number of questions concerning your system's configuration and will 
then configure your OpenZinc installation for your environment. Once this is 
complete all your OpenZinc makefiles will be ready for use in your environment. 
See the CURSES.TXT file if you need more details on compiling OpenZinc for 
Curses. 

NEXTSTEP 
OpenZinc provides Unix makefiles for all tutorial and example programs. These 
can be run from a terminal window to build an application. Use one of these 
makefiles as a template for your own makefiles. See the NEXTSTEP.TXT 
file for information on using ProjectBuilder.app to build your applications. 

Getting Started with OpenZinc Programming 279 



Compiler Considerations 

280 Getting Started with OpenZinc Programming 



Appendix B Example Programs 

This appendix lists OpenZinc's example programs, and explains what each 
program does as well as its design principles. 

Callbacks 

VALIDT Creates two windows with number fields. If the user inputs a number outside 
the range 0-999, the program alerts the user that the number is out of range. 

Concepts. 

' Using nonstatic methods. 

• Using range-checking to validate with UIW_BIGNUM. 

• Defining a user function to validate with UIW_BIGNUM. 

• Deriving a window. 

Getting Started with OpenZinc Programming 281 



Example Programs 

Design principles. The VALIDATE class uses the nonstatic 
MemberValidate() method to validate its UIW_BIGNUM fields. To 
accomplish this, VALIDATE defines the Validation( ) method, which is 
static, to call the MemberValidate() method. When constructing a 
UIWJBIGNUM object, VALIDATE passes the Validation() method to the 
UIW_BIGNUM constructor, since it requires a static method. 

The Input A field is a UIW_BIGNUM that uses range-checking for valida-
tion. When the VALIDATE constructor constructs this field, it passes the 
range "0..999" to the constructor to allow normal UIW_BIGNUM range 
validation. Notice that a user function is not passed to the constructor. 

The Input B and Input C fields are UIW_BIGNUM objects that call a user 
function to perform validation. When the VALIDATE constructor constructs 
these fields, it passes the Validation() method to the constructor. These 
UIW_BIGNUM objects will perform validation by calling the Validation 
method. Notice that a range is not passed to the constructor. VALIDATE 
derives from UIW_WINDOW. 

The VALIDATE window does not define an Event() method, so the base 
UIW_WINDOW class handles all events. This way, VALIDATE retains all 
normal window functionality, while defining other private methods and 
members to provide additional functionality. 

Drawltem 

A N A L O G What it does. ANALOG creates an analog clock with the current date at the 
bottom. The operating system notifies the clock when each second has 
passed 

through a timer device. 

Concepts. 

• Using UID TIMER with TMR_QUEUE__EVENTS. 

• Using I_INCREMENT_VALUE with a UIW DATE field. 
• Using DataSet() with a UIW_TIME field. 

• Using the WOS_OWNERDRAW status flag. 

• Drawing an "owner-draw" object. Using display primitives with XOR. 

282 Getting Started with OpenZinc Programming 



Design principles. The UID_TIMER device in ANALOG uses the 
TMR_QUEUE_EVENTS flag, which causes UID_TIMER to post an 
E_TIMER event on the event manager's queue every second. Since the 
UID_TIMER posts the E_TIMER event on the event manager's queue, only 
the current window on the window manager receives the E_TIMER event. 
ANALOG only has one window, so this method is sufficient. UID_TIMER 
may also notify an object directly with an E_TIMER event. 

When the CLOCK window receives an E_TIMER event at midnight, it noti-
fies the UIW_DATE field at the bottom of the window by calling 
UIW_DATE::Information() with INCREMENT_VALUE. The UIW-
_DATE field therefore increments itself by one day, changing its day, month, 
or year as it needs to. 

When ANALOG runs in text mode, the analog clock is replaced by a 
UIW_TIME field that updates every second. To accomplish the update, the 
CLOCK window calls the UIW_TIME field's DataSet() with the new sys-
tem time every time the CLOCK window receives an E_TIMER event. The 
CLOCK window constructs a ZIL_TIME object and passes it to the 
UIW_TIME field's DataSet() to achieve the update. 

The CLOCK class derives from UIW_WINDOW, and its window passes 
most of the events it receives down to the UIW_WINDOW class. The 
CLOCK window's event method handles only the E_TIMER event. This 
way, the CLOCK class retains all normal window functionality and 
responds to the E_TIMER event by updating its children as appropriate. 

The ANALOG_FACE class is derived from UI_WINDOW_OBJECT so 
that the CLOCK may consider it an updateable child object. The 
ANALOG_FACE passes most of the events it receives down to the 
UI_WINDOW_OBJECT class. The ANALOG_FACE event method han-
dles only the S_CREATE, S_CHANGED, and S_MOVE events. This way, the 
ANALOG_FACE class retains all normal window object functionality and 
responds to the S_CREATE, S_CHANGED, and S_MOVE events by recalcu-
lating the center of the analog face. 

The ANALOG_FACE class has private members to store the center of the 
analog face and the positions of the clock hands for updating the display. The 
ANALOG_FACE class also defines a Drawltem() to display the analog 
face on the CLOCK window. The ANALOG_FACE sets its 
WOS_OWNERDRAW status flag in the event method when it receives an 

Getting Started with OpenZinc Programming 283 



Example Programs 

S_CREATE, S_CHANGED, or S_MOVE event so that the UI_WIN-
DOW_OBJECT base class will call ANALOG_FACE::DrawItem() to 
update the analog face. 

The "owner-draw" ANALOG_FACE Drawltem method draws the 
ANALOG_FACE object by getting the system time from the parent 
CLOCK object's time field, which is a ZIL_UTIME object. Then the 
Drawltem method virtualizes the display by calling VirtuaIGet(), followed 
by calls to the Face(), UpdateMinutes(), and UpdateSeconds() methods. 
The Face() method draws the background of the analog face. The 
UpdateMinutes() method updates the hour and minute hands. The 
UpdateSeconds() method updates the second hand. 

ANALOG_FACE uses of the XOR mode of the display primitives in the 
UpdateMinutes() and UpdateSeconds() methods when drawing the hands 
on the analog face. The display's Polygon method draws the hour and 
minute hands in XOR mode, and the display's Line method draws the second 
hand in XOR mode. When the ANALOG_FACE updates the clock hands, it 
draws the old hands in XOR mode to erase them, then redraws the new 
hands in XOR mode. 

G R I D Uses the Drawltem() function to display a tic-tac-toe grid. It shows how to 
use palettes for drawing and how to reference graphical drawing so the 
drawn object stays centered. 

Concepts. 

• Drawltem() function 

• Registering an object with a native operating environment 

• W0S_0WNERDRAW flag 

• VirtualGet(), VirtualPut() 

• lastPalette 

• Clipping region parameter of display functions 

• Using palettes for drawing 

Design principles. GRID contains a derived class, DRAW_OBJECT, that 
derives from UI_WINDOW_OBJECT. DRAW_OBJECT's Drawltem() 
function overrides the base class's Drawltem() function to draw a tic-tac-
toe grid. DRAW_OBJECT 's Event() function handles resizing and regis-
ters itself with the native operating environment. 

284 Getting Started with OpenZinc Programming 



G R A P H Uses the Drawltem() function to display four windows, each with a differ-
ent type of chart. The first window draws a line chart. The second window 
draws a sizeable pie chart. The third window draws a nonsizeable pie chart. 
The fourth window draws a bar chart. 

Concepts. 

• Drawltem() function 

• W0S_0WNERDRAW flag. 

• VirtualGet(), VirtualPut() 

Design principles. GRAPH draws directly on the client area of the screen. 
LINE_CHART, BAR_CHART, and PIE_CHART derive from 
UIW_WINDOW. Each of their Drawltem() functions draw the graphs. 

DSPLAY Uses the drawing primitives to draw a picture with several objects and bit-
maps. 

Concepts. 

• Creating palettes. 

• Using the graphics primitives. 

• The Drawltem() function. 

Design principles. DISPLAY_WINDOW is a derived window that is added 
as a child window. Its virtual Drawltem function calls the drawing functions 
to create the image. These drawing functions make use of the drawing prim-
itives provided in OpenZinc's libraries to create the actual image. 

A UI_PALETTE is defined for each of the drawing functions except 
DrawBitmap(). The bitmap is defined in the code. The UI_PALETTE has 
ten fields of information. The first three are used for text mode and the last 
seven are for graphics mode and grey scale monitors. 

DrawRectangIe() draws five rectangles, one in each corner and one in the 
middle of the window. DrawEllipse() draws four arcs that can be seen at 
each corner of the window. DrawPoIygon() draws the triangular pieces at 
each corner. DrawBitmap() draws smiley faces, one at each corner and one 
in the middle. DrawAlphabet() draws the letters of the alphabet in four 
places in the window. DrawLines() draws the remaining lines that are seen 
in the window. 

Getting Started with OpenZinc Programming 285 



Example Programs 

LSTITM Puts a list of derived objects on a windows. The programmer is responsible 
for the drawing of the objects. The items in the list have multiple entries and 
lines them up in columns. 

Concepts demonstrated. 

• Deriving an object from UIW_BUTTON 

• WOS_OWNERDRAW 

• Providing a Drawltem() function for a derived class 

• Using drawing primitives from a derived UI_DISPLAY class 

• Sorting by using a Compare() function 

Design principles. To draw an object by hand we must derive a class. For 
this example we will derive from UIW_BUTTON. We must give the class a 
constructor. The constructor must call the base class's constructor. Inside of 
the constructor we initialize any member data and since we want to do the 
drawing we will also set the WOS_OWNERDRAW flag. We also declare a 
destructor to handle clean-up of the initialized member data. 

Since the object is WOS_OWNERDRAW we will also provide a 
Drawltem() function. A Drawltem() function takes two parameters, a the 
contents of the memory address of UI_EVENT, and a EVENT_TYPE, and 
returns an EVENT_TYPE. In the Drawltem() function we use LogicalPal-
ette to determine what colors we should use for painting. Before we do any 
painting we must call display->\irtua\Get(). This sets up the regions and 
notifies the environment we are going to begin painting. Next we can paint 
by calling the basic display primitives—Bitmap(), Ellipse(), Line(), 
Polygon(), Rectangle(), and Text(); as well as UI_WINDOW_OBJECT 
drawing functions—DrawBorder(), DrawShadow(), DrawText(), and 
DrawFocus().. We will paint the background first then paint several entries 
at fixed distances so that the columns will line up. When painting is done we 
must call display->\irtualPut() to notify the environment we are done 
painting. Last, we return TRUE to say we drew the object. 

We write our compare function as a static member function, so that when we 
pass the function to a constructor that takes a compare function, the compiler 
doesn't return an error that the function is of the wrong type. 

Compare functions take two void pointers which point to the two objects to 
compare and return an int. If the first object is greater than the second, the 
compare function must return a positive value; if the first one is less than the 
second, the compare function must return a negative value; and if they are 

286 Getting Started with OpenZinc Programming 



equal, the compare function must return a zero. Since OpenZinc only passes us a 
void pointer, this is one of the few places we must use a typecast. Last, we 
declare any member variables necessary to hold onto our data. 

Inside of the program, we create a list, give it the compare function, and fill 
it with our derived objects. Then, as with other programs, we put our field on 
a window, add the window to the Window Manager, and go into our control 
loop. 

Event and palette mapping 

C A L C A simple calculator program that replaces the hotKeyMapTable defined in 
the library to show how to change the mapping of events. 

Concepts demonstrated: 

• Event mapping. 

• User function as a class member. 

Design principles: The hotKeyMapTable has four fields per entry. The first 
entry is the objectlD. The second is the event that should be returned. The 
third is the event type. The fourth is the raw code. The main function 
replaces the hotKeyMapTable defined in the library. The main function 
remaps the hotKeyMapTable variable declared in G_WIN.CPP so that it 
points to the new hotKeyMapTable. 

Notice the hotKeyMapTable and the eventMapTable look the same, but the 
hotKeyMapTable does not use the objectlD or the event type. Both of these 
fields could contain 0 without affecting the program, and so the example 
program can use E_KEY as the event type for all environments. When 
changing the eventMapTable, the objectlD field should correspond to the 
object that should receive the event, such as ID_BUTTON for a 
Ul WJ8UTTON. 

The event type must correspond to the operating system. For example, a key-
board event in DOS would have the E_KEY event type. However, in Win-
dows, the keyboard event type would be WM_CHAR or WM_SYSCHAR. 

Getting Started with OpenZinc Programming 287 



Example Programs 

A user function must be a static function. The constructor of an object 
requires the address of a user function as a parameter. Only a static function 
has an address at all times. Static member function do not have access to 
nonstatic members. Nonstatic members are accessed through the static user 
function calling a nonstatic member function. 

CALNDR Implements a Drawltem() function to draw a calendar grid on a window. It 
also uses its own event map table to map events. 

Concepts demonstrated. 

• DrawItemO function 

• Event mapping 

• Help system 

• Derived window with an overloaded Event() function. 

• Pop-up items with both a user function and value. 

Design principles. The Drawltem() function is implemented in the derived 
class DAYS_OF_MONTH. This function determines which of program's 
palettes it should use when drawing the calendar. The WOS_OWNERDRAW 
flag must be set the object that uses the Drawltem() function. In this pro-
gram the flag is set in the constructor of DAYS_OF_MONTH. This flag tells 
OpenZinc to call the Drawltem() function, and does not let the operating system 
or OpenZinc draw the object. 

CALENDR creates an event map table. An event map table has four fields 
per entry. The first is the objectlD. The second is the event that is returned. 
The third is the event type. The fourth is the raw code. The new event map 
table has entries for a new object ID_CALENDAR. For these entries to be 
used the windowID array must have a match for ID_CALENDAR. The 
windowID array is changed in the constructor for the CALENDAR class. 
The eventMapTable pointer, a public member of UIJWINDOW_OBJECT, 
points to the default event map table. For the new event map table to be used, 
this pointer must be changed to point to the new table or the Event() func-
tion of the object must call MapEvent() directly and pass in a pointer to the 
new event map table. 

Using a derived window allows us to overload the Event() function, which 
can trap user-defined messages or other predefined messages. All messages 
not handled by the Event( ) function should be passed down to the base class 
for processing. 

288 Getting Started with OpenZinc Programming 



Assigning a value to the pop-up item allows us to assign the same user func-
tion to each pop up item. The user function tests the value of the selected 
pop-up item to determine what it should do. We can use this same method on 
any object that has a value field. 

Get/set data 

PHONBK Uses persistence to load and store phone numbers from a data file. The user 
has the options of loading, saving, or deleting phone numbers to their data 
file. 

Concepts demonstrated. 

• User functions. 

• Getting and setting text on a window. 

• Loading and saving data through persistence 

• UI_STORAGE_OBJECT_READ_ONLY 

• UI_STORAGE_OBJECT 

Design principles. In PHONEBK, each button on the window uses a user 
function, each of which uses the Information() function to get and set text 
from the fields on the window. The UI_STORAGE_OBJECT_READ_ONLY and UI_STORAGE_OBJECT member functions make the data 
persistent. 

W I N D O W Creates two windows, a UIW_WINDOW with name, address, telephone 
number entry fields; and a modal dialog window with an OK button. Then 
the user can see the data and press the OK button to dismiss the dialog win-
dow. 

Getting Started with OpenZinc Programming 289 



Example Programs 

Concepts demonstrated. 

• DataSet() 

• DataGet() 

• Message passing 

• Modal dialog windows 

• Persistence 

Design principles. This program takes the data out of the fields in the first 
window and uses DataGet() to retrieve the data from the entry window and 
uses DataSet() to pass them to the dialog window. 

P O S T W N At launch time, a window with some data entry fields appear on the screen. 
The user types in some data, which the program saves in a .DAT file when 
the user presses the save button. At the next launch, the program displays the 
data the user saved during the last session. 

Concepts demonstrated. 

• Persistent object storage and retrieval 

Design principles. The window is an instance of UIW_WINDOW, which 
contains string fields and an instance of UIW_BUTTON. The button 
instance has a user function that calls the UI_WINDOW persistence mem-
bers to save the data to the .DAT file. 

NOTEBK Creates a UIW_NOTEBOOK object with four pages. Each page shows dif-
ferent information from an imaginary employee record. 

Concepts demonstrated. 

• Using the UIW_NOTEBOOK object. 

STATUS Demonstrates how to check the status flags of a group of checkboxes. Shows 
how to set the status of a group of checkboxes in one group based on the set-
tings in another group. Also shows how to create and add an object to a ver-
tical list. When run, the main window comes up as a minimized icon, which 
the user can then maximize. 

290 Getting Started with OpenZinc Programming 



Concepts demonstrated. 

• Adding a window to the windowManager in minimized or maximized 
state. 

• FlagSet() macro 

• Setting the woStatus flags of an object 

• Using a for() loop to get a pointer to a window's subobjects 

• Destroy() function 

• Index() function 

• Get() function 

• S_REDISPLAY 

• BTF_DOUBLE_CLICK flag 

• Using bitmaps and icons from a .DAT file 

• Sizing a button 

Design principles. STATUS uses an Event() function to process user 
requests. It uses a simple for() loop to go through group 1 's checkbox child 
objects, and uses the FlagSet() macro to check if a checkbox is checked. 

When the user clicks on the Set group2 button, a for() loop checks group l's 
checkboxes, and sets group 2's checkboxes to match. When the user clicks 
the Copy to vt list button, entries reflecting group l's settings are added to 
the vertical list. The reset button has a user function that demonstrates the 
BTF_DOUBLE_CLICK flag. 

M E N U S Changes the status of menu items when different buttons and menu items are 
selected. 

Concepts demonstrated. 

• The WOF_NON_SELECTABLE flag. 

• The WOS_SELECTED flag. 

• The Information() function. 

• The Get() function. 

Design principles. MENUS uses the Get() function to get pointers to the 
different menu items. It then modifies the flags associated with those menu 
items and uses the Information() function to modify their appearance. 

Getting Started with OpenZinc Programming 291 



Example Programs 

SPREAD Demonstrates the usage of the UIW_TABLE, UIW_TABLE_RECORD, 
and the UIW_TABLE_HEADER classes by creating a simple spreadsheet. 

Concepts demonstrated. 

• Deriving a class from the UIW_TABLE class. 

• Deriving a class from the UIW_TABLE_RECORD class. 

• Getting and setting table record data. 

• Loading and storing table data with the UI_STORAGE class. 

Design principles. Derives a class called SPREAD_SHEET from the 
UIW_TABLE class. Creates a multiple-column table, and provides an 
Event() function for processing special spreadsheet events. The TBLF_GRID flag causes the table to draw lines separating the rows and columns 
of the table, giving it a spreadsheet appearance. The SPREAD_SHEET 
class also performs the calculations required for maintaining the spreadsheet. 

A class named SPREAD_SHEET_CELL is derived from the 
UIW_TABLE_RECORD classes. This class processes the S_SET_DATA, 
S_CURRENT, S_NON_CURRENT, and selection events. It communicates 
with its parent spreadsheet class by sending events. The spreadsheet cell 
contains one UIW_STRING child object used for displaying the cells con-
tents. 

The spreadsheet data consists of an array of pointers initialized to NULL, and 
memory is allocated only when data is entered into a cell. At this time, the 
corresponding pointer gives the address of the new data. 

SPREAD_SHEET uses the UI_STORAGE class to load and store its data 
in an environment-independent manner. 

A G E N C Y Shows a list of entries like what you might see for a travel agency. You can 
add new objects to the list and delete old ones. There is also a save menu 
option which allows you to save the window and its contents. Entries in the 
list are saved as persistent objects. 

292 Getting Started with OpenZinc Programming 



Concepts demonstrated. 

• Providing an Event() function for a derived class 

• Creating and using user-defined events 

• Providing a Drawltem() function for a derived class 

• Using drawing primitives from a derived UI_DISPLAY class 

• Loading and saving data through persistence. 

Design principles. We derive AGENCY_ENTRY from UIW_BUTTON 
and give it two constructors, one for creating an instance without persistence 
and one for creating one with persistence. In our case the first constructor 
will call the standard UIW_BUTTON constructor and the second one the 
persistent object constructor. 

Persistent object constructors take three parameters, pointers to ZILJCHAR, 
ZIL_STORAGE_READ_ONLY, and ZDL_STORAGE_OBJECT_READ_ONLY, 
which we must pass to the base class constructor. Inside the constructor we 
call the virtual Load() function to load the data for our derived class. 

The virtual Load() function takes the same three parameters as the persis-
tent constructor, but we are only going to use the third parameter, a pointer to 
ZIL_STORAGE_OBJECT_READ_ONLY, to load data from the persis-
tent object file. We can use any Load() function documented in the 
ZIL_STORAGE_OBJECT_READ_ONLY chapter of the reference guide. 

When using the Load() function across multiple operating environments, 
we should be sure to take into account different byte-ordering schemes. On 
some platforms the type int is of different sizes and different byte orders. We 
should instead use specific types such as ZIL_INT16 or ZIL_INT32. OpenZinc 
will take care of byte-ordering differences automatically if we use these 
types. 

Our class also has a virtual Store() function, which also takes the same three 
parameters as the persistent constructor. We must ensure that our Store() 
function loads the same data, and in the same order. Since the constructor 
must first call the base class, we must first call the base class's Store() func-
tion. Then we store the data by calling the Store() function from the 
ZIL_STORAGE_OBJECT_READ_ONLY parameter. 

We must also provide an object ID and a New() function for our class. The 
unique object ID is a variable of type OBJECTID, which we will use in the 
object table to look up objects for a New( ) function. The New() function 
takes the same three parameters as the persistent constructor and returns a 

Getting Started with OpenZinc Programming 293 



Example Programs 

pointer to a UI_WINDOW_OBJECT. It merely creates a new instance of 
our class, using those parameters and returns a pointer to the object. The 
address of the New() function is placed in the objectTable. When a window 
is loading it children it does a lookup in the objectTable for the appropriate 
New() function. These are used because of the difficulties with trying to put 
constructors directly into the table. 

Now that we have persistence in our class we can save our window and the 
contents of the window will be saved automatically. When the user requests 
a save we construct a ZIL_STORAGE. This is the class that accesses the 
persistent object file for us. We specify the file name and UIS_READWRITE 
to allow us to write in the persistent object file. 

Then we call the window's Store function to save it. We pass in the name of 
the window and the ZIL_STORAGE we just created, but let the third 
parameter default out. This stores all of the data to a temporary file. Then we 
call ZILJSTORAGE's Save function to resolve our data out to the perma-
nent file. Finally, we delete ZIL_STORAGE to flush any buffers and close 
the persistent object file. The next time we run our program, the window will 
be loaded with the contents saved during the previous session. 

I18N 

Shows how to decouple strings used in a window from the creation and 
manipulation of the window, allowing easy internationalization of the win-
dow. Also shows how to override the strings compiled into the library with-
out editing and recompiling the library source. 

Concepts demonstrated. 

• Using ZIL_LANGUAGE_MANAGER and ZIL_LANGUAGE to 
manage two different languages. 

Design principles. We declare a new class called I18N_WINDOW, which 
consists of a window; title; system, minimize, and maximize buttons; and 
three prompts. We want to change the language on the title and prompts so 
that we can easily add other languages and so that we don't have to modify 
I18N_WINDOW's source code. We do this using the ZIL_LANGUAGE_-

294 Getting Started with OpenZinc Programming 

I18N 



MANAGER. First we set up the set of strings that we want to use and bind 
them to the I18N_WINDOW::_classNamerThen I18N_WINDOW in the 
constructor fetches the strings by using its class name and gets the strings it 
needs to use. For completeness, we also replace the system button strings. 
(Notice that some operating systems may not use the replaced system button 
strings.) 

DELTA Shows how to load an object that was stored by the Designer as a DELTA 
object. It also shows how multiple different language/locale resources may 
be stored in the same file with a minimal amount of overhead. Using this 
method, an application built with OpenZinc Application Framework may support 
multiple languages and locales from one executable and one POST file. 
Only the changes (the delta) between different versions of each resource will 
be stored, reducing the amount of disk space used. 

Concepts demonstrated. 

• Using ZIL_DELTA_STORAGE and ZIL_DELTA_STORAGE_OBJECT 
to manage two different languages. 

Design principles. A resource is loaded from the file P_DELTA.DAT. It 
contains a date and a time. The first resource uses the simple numeric for-
mats to display all the objects. The second resource displays the date with 
named months and days of the week, while the time uses twelve-hour for-
matting ("am'V'pm"). The field sizes have been adjusted for the larger field 
sizes needed. Both windows are stored in the same POST file, but only the 
changes made to the second are really stored. The size of the first window is 
161 bytes, while the size of the second window is only 36 bytes, including 
the overhead of the delta object information, which in this case is 12 bytes. 

Getting Started with OpenZinc Programming 295 



Example Programs 

Messages 

Uses the event structure to create an event that can be placed on the queue 
and trapped by a derived window's Event() function. 

Concepts demonstrated. 

• Creating events 

• Derived window with an overloaded Event() function. 

Design principles: An event is created in the LeaveMessage() user function 
by setting event.type to the desired event. The event.data part of the structure 
is a void pointer used to pass more information with the event. 

The overloaded Event() function traps user-defined events or predefined 
OpenZinc or operating system events. This can be used to override existing func-
tionality or when implementing new functionality. Any events not handled 
by the overloaded Event() function should be passed on to the base class for 
processing. 

The user matches two buttons with the same bitmaps in a simple game of 
"concentration." Through persistence, the program loads a bitmap from disk 
and assigns the bitmap to a button. 

Concepts demonstrated. 

• Deriving a window. 

• Deriving a button. 

• Loading a bitmap image through persistence. 

• Assigning a bitmap to a button. 

• Message passing. 

Design principles. MATCH_WINDOW is the control window for the pro-
gram. Event() handles the calls to switch bitmaps for selected buttons, to 
create a new set of bitmapped buttons, and to take the matching buttons off 
the display. Jumble() randomizes the bitmaps used for each button dis-
played. The buttonWindow member actually contains the bitmapped buttons. 

MATCHJBUTTON is the bitmapped button being added to the 
MATCKLWINDOW object's buttonWindow. Its SetBitmap() switches the 
bitmap for the button by loading the desired bitmap from disk and setting it 

296 Getting Started with OpenZinc Programming 

MESSGS 

MATCH 



on the button. Each button sends a TOGGLE_BITMAP message to the 
MATCH_WINDOW object via the event queue when the button is 
selected. 

One of the menu items used sends a NEW_GAME message to the 
MATCH_WINDOW by placing it on the event queue when selected. This 
message causes a new set of bitmapped buttons to be created. 

W O R L D Shows how to broadcast messages using a derived window manager as well 
as updating a bitmap of a rotating world. 

Concepts demonstrated. 

• Deriving a window manager. 

• Deriving a device. 

• Broadcasting messages to all windows. 

Design principles. WINDOW_MANAGER is the derived window man-
ager that broadcasts the messages to all the attached windows. 

WORLD_WINDOW is a derived window that receives the message to 
update its own rotating world bitmap. Each window updates it's own inde-
pendently rotating world. 

WORLD_DEVICE is the derived device that places an update message on 
the queue when an appropriate amount of time has passed. 

Miscellaneous 

FRESTR Implements a free store exception handler by installing a new handler. When 
the new() operator fails to allocate memory, the new handler will be called 
allowing the application to recover gracefully. 

Concepts. 

• Implementing and installing a new handler. 

• Performing a compiler independent task. 

Getting Started with OpenZinc Programming 297 



Example Programs 

Design principles. MEMORY_ALLOCATION_ERROR_SYSTEM is a 
class that handles a free store exception. It will contain a constructor, a 
destructor, and a routine to handle the exception. 

The running example will add a window to the Window Manager with this 
message: 

This is a test of the Free Store Exception Handler. 

When the new operator fails, a NULL is usually returned. For this example a 
"new handler" is called instead. This handler takes control, notifies the user, 
and cleans up and exits. It may take a few hundred windows to use up all of 
memory. Be patient and watch. 

The class will then go through a loop that continually creates windows and 
adds them to the Window Manager. When memory is exhausted, and the 
new handler invoked, a dialog window will appear explaining the system is 
out of memory and allow a graceful exit back to DOS. 

This program is a DOS-only example. Since there is no standard for this 
exception, and each compiler implements doing a new handler differently, 
there will be multiple #if deflned(..) statements throughout the code. This 
will be an example for programmers on how to go about other compiler-
independent tasks, such as Critical Error handlers and Interrupt Service Rou-
tines. 

DRAG Simulates a file manipulation dialog window. The user can pretend to move 
files from one location to another by dragging them from list to list. 

Concepts demonstrated. 

- Using the WOAF_ACCEPTS_DROP flag. 

• Using the WOAF_DRAG_OBJECT flag. 

Design principles. In order to drag an object it must have the 
WOAF_DRAG_OBJECT flag set. We set this flag on the items in the lists so 
they can be moved. 

In order for an object to accept a dragged object it must have the 
WO A F_A CCEP TS_DR OP flag set. We set this flag on the list objects so they 
can accept objects that are dragged to them. 

The receiving object determines if an object can be copied or moved. Since 
we are dragging from list to list, the objects can either be copied or moved. 

298 Getting Started with OpenZinc Programming 



SPY Reports the events that go through the system on a scrolling TTY window. 

Concepts demonstrated: 

• Deriving a device. 

• Implementing a Poll() member function for a derived device. 

• Deriving a prompt. 

• Deriving a TTY window. 

• Implementing a Printf() member function for a TTY window. 

Design principles. The SPY class is derived from UI_DEVICE. The SPY 
class passes most of the events it receives down to the UI_DEVICE class. 
The SPY device's event method handles only the SJNITIALIZE, D_ON, 
and D_OFF events. This way, SPY retains all normal device functionality 
and responds to the S_INITIALIZE and D_ON events by adding its spy win-
dow to the Window Manager, and responds to the D_OFF event by subtract-
ing its spy window from the window manager. SPY includes the spy 
window, which is a normal UIW_WINDOW that provides the messages to 
be monitored in the TTY window. SPY also includes the TTY window 
itself, so that the SPY device may call the TTY window's Printf() member 
function to display the events monitored. 

The SPY class defines a Poll() member function that is called instead of the 
base UI_DEVICE Poll() member function. The SPY device's Poll() mem-
ber function uses a lookup table to map each event monitored to a message 
displayed in the TTY window. Only messages that flood the system, such as 
mouse-move messages, or those that do not provide interesting information, 
are filtered out. 

The TTY_ELEMENT class derives from UIW_PROMPT. The 
TTY_ELEMENT class passes most of the events it receives down to the 
UIWJPROMPT class. The TTY_ELEMENT event method handles only 
the SJNITIALIZE event. In this way, TTY_ELEMENT retains all normal 
prompt functionality and responds to the SJNITIALIZE event by adjusting 
its relative region according to the height passed to the constructor by the 
TTY window when the TTY window creates the TTY_ELEMENT object. 
The TTY window calls the DataSet() member function of the 
TTYJELEMENT class, which the TTY_ELEMENT class does not define, 
and so it inherits the DataSet() member function defined by the 
UIW_PROMPT class. 

Getting Started with OpenZinc Programming 299 



Example Programs 

The TTY class derives from UIW_WINDOW. The TTY window passes 
most of the events it receives to the UIW_WINDOW class. The TTY win-
dow's event method handles only the S_CREATE and S_CHANGED events. 
This way, TTY retains all normal window functionality and responds to the 
S_CREATE and S_CHANGED events by updating its children and class 
members. 

The TTY class defines a Printf() member function that provides functional-
ity similar to the printf function in the standard C library. Printf() provides 
formatting using the vsprintf function in the standard C library. The Printf 
member function makes use of the TTY_ELEMENT class to display and 
scroll as many lines of text as will fit in the TTY window. Printf() provides 
scrolling by calling the DataSet() member function of each 
TTY_ELEMENT object on the TTY window. 

C O O R D S Demonstrates the differences between cell, mini-cell, and graphics coordi-
nates. 

Concepts demonstrated. 

• Use of the WOF_MINICELL flag. 

• Use of the WOS_GRAPHICS flag. 

Design principles. COORDS uses the WOF_MINICELL and WOS-
jGRAPHICS flags to change the way the size parameters of each window 
are interpreted as they are being added to the window manager. 

FONTS Shows how to add and use a new font for each OpenZinc-supported platform. 

Concepts demonstrated. 

' Creating a font in each supported platform. 

• How to use the newly created font. 

Design principles. FONT displays four UIW_STRING objects that use the 
three default fonts an one newly created one for each supported platform. 

LoadFont() is the function that creates and loads the new font into the 
UI_XXX_DISPLAY:ifontTable for use. 

300 Getting Started with OpenZinc Programming 



C O L O R S Creates a window containing 256 boxes, where each box is drawn in one of 
256 colors. The program will run only in VGA or SuperVGA graphics 
modes that support 256 or more colors. 

Concepts demonstrated. 

' D e r i v i n g a window. 

• Using the WOS_OWNERDRAW flag. 

• Using display primitives within a Drawltem() function. 

• Using 256-color palettes. 

Design principles. COLOR_WINDOW is a derived window with its own 
Drawltem() function. This function draws 256 filled boxes within the win-
dow, each box displaying one of 256 colors. The Drawltem() function also 
displays the corresponding palette number (0..256) above each colored box. 
Also, the RGBConvert() function is used to convert the RGB values, stored 
in the .HPP file, to the Windows RGB format. 

The .HPP file contains the color value for each of the colors numbered 16 
through 255. RGB color values are also used for those environments in 
which they are supported. 

New objects 

GMGR Displays five OpenZinc windows, each of which shows some uses of OpenZinc's 
geometry management. 

Concepts demonstrated. 

• Constructing instances of the UI_GEOMETRY_MANAGER class, and 
adding these instances to windows 

• Use of the following UI_CONSTRAINTS—UI_ATTACHMENT, UI-
_RELATIVE_CONSTRAINT, UI_DIMENSION_CONSTRAINT 

• Use of the constraint flags 

Getting Started with OpenZinc Programming 301 



Example Programs 

Design principles. Gmgr creates the following example windows: 

• BasicGMWindow. Shows basic geometry management with buttons 
being attached to the sides of the parent window. As the parent is resized, 
the buttons all stay in the corners. This window also shows a text object 
that resizes with the parent window, with maximum and minimum limits. 

• TieGMWindow. Shows how to tie child buttons to other child buttons. 
When a button moves because its parent is resized, those buttons that are 
tied to it move also. 

• OppositeGMWindow. Shows how to tie one edge of a child to the oppo-
site edge of its parent. 

• RelativeGMWindow. Shows how to tie a child to a relative position on 
its parent. For example, we attach the top left corner of a button to the 
point on the parent window that is 10% from the left edge and 10% from 
the top. We also attach the bottom right corner of the button to a point 
40% from the left and 40% from the top of the parent. This causes the 
button to retain its relative position and size on the parent regardless of 
the parent's size. 

• CenterGMWindow. Shows how to attach the center of a child to a rela-
tive point on the parent. This lets a child recalculate its position as its par-
ent is sized, while retaining its original size. 

All of these example windows follow the same procedure for implementing 
geometry management: 

• Each window is created in a separate function. 

• A pointer to each child object that will have its geometry managed is cre-
ated. We use the pointer twice: once to add the child to its parent, and 
again to create a constraint for that child. 

• A UI_GEOMETRY_MANAGER is created and added to the parent 
window before any children that it will manage. 

• UI_CONSTRAINTS, such as UI_ATTACHMENT, 
UI_RELATTVE_CONSTRAINT, and UI_DIMENSION_CONSTRAINT, 
are created and added to the geometryManager. Each constraint is associ-
ated with one or two child objects derived from 
UI_WINDOW_OBJECT. These UI_CONSTRAINTS are created after 
their associated objects are created. 

302 Getting Started with OpenZinc Programming 



PRINTR Demonstrates a UI_PRINTER object by printing text and graphics. 

Concepts. 

• Printing from within an application. 

• Using an object's Drawltem() for both drawing and printing. 

• Sending a single-page print job to the printer. 

• Sending a multiple-page print job to the printer. 

• Sending a print job to a PostScript file. 

• Screen dumps 

• Deriving a new UI_HELP_SYSTEM capable of printing. 

Design principles. The main application window is a generic 
UIW_WINDOW, with a menu of print options. A nonfield window for 
drawing display primitives occupies the client area of the window. 

We print from the application using the Print menu option that uses a call-
back routine. When the user selects this option, the program presents a dia-
log window that allows setting up the print job. The user has a choice of 
printing graphics or dumping the contents of the screen to the printer or to a 
PostScript file. 

The DRAW_WINDOW class derives from UIW_WINDOW. It contains its 
own Drawltem() routine for drawing display primitives such as Bitmap(), 
Line(), Rectangle(), Ellipse(), and Polygon() for both the display and the 
printer. This object is the nonfield window added to the main application 
window. 

Sending a single-page print job to the printer occurs when doing screen 
dumps and printing the graphics from DRAW_WINDOW. Sending a multi-
ple page print job happens when printing a text document that spans multiple 
pages. A class is derived from UI_HELP_SYSTEM to do this. 

This program creates a PRINTABLE_HELP_SYSTEM class that derives 
from UI_HELP_SYSTEM in order to add a Print option to the help win-
dow, and to start the print jobs that format and output the pages of help text 
to the printer. 

Getting Started with OpenZinc Programming 303 



Example Programs 

304 Getting Started with OpenZinc Programming 



Sets defaults to nine-pin dot matrix, port 3. 

• SET OpenZinc_PRINTER=DM24, LPT I 

Sets defaults to 24-pin dot matrix, port 1. 

When printing output to a PostScript file, the OpenZinc_PRINTER environment 
variable is ignored. 

SPIN Simulates a simple video editor interface using spin controls and sliders to 
set various values. 

Concepts demonstrated. 

• Deriving your own object for use with a spin control. 

• Setting ranges on a spin control. 

• Setting ranges on a slider. 

• Using user functions with a slider. 

Design principles. A spin control by default only works with five OpenZinc 
objects: UIW_BIGNUM, UIW_DATE, UIW_INTEGER, UIW_REAL, 
and UIW_TIME. But it can be used with any window object that handles 
the I_DECREMENT_VALUE and I_1NCREMENT_VALUE information 
requests. 

The object that is to be spun is passed to the spin control in the spin control 
constructor. You set a range of values for a spin control by passing an appro-
priate range in the controlled object's constructor. 

To create a slider, set the SBF_SLIDER flag in the UIW_SCROLL_BAR 
constructor. This flag causes the slider to draw differently than a scroll bar in 
most environments. It also causes a vertical slider to move its thumb button 
up as the value increases, as opposed to a scroll bar, which moves its thumb 
button down when it is increasing. 

To set the range on a slider, set up a UI_SCROLL_INFORMATION struc-
ture with the desired values. This structure is passed into the UIW-
_SCROLL_BAR constructor. 

Other than its appearance and the reverse thumb button motion on vertical 
sliders, sliders operate the same as scroll bars do. Typically, you use a slider 
by itself by associating it with a user function in the constructor, as a user 
function can be associated with a scroll bar. The user function is called when 
the slider is manipulated. 

Getting Started with OpenZinc Programming 305 



Example Programs 

Notice that we used positional parameters on the slider. This allows us to 
position the slider where we want it. If the WOF_NON_FIELD_REGION 
flag is set, these parameters are ignored. Scroll bars are usually nonfield 
regions but sliders often are not. 

MDI Demonstrates creating a Multiple Document Interface (MDI) application. 
One MDI frame window is created that contains multiple MDI child win-
dows. Scrolling window capabilities are added to the MDI frame window 
and to all the MDI child windows. 

Concepts. 

• Creating an MDI frame UIW_WINDOW 

• Creating MDI child UIW_WINDOWs. 

• Deriving a persistent UIW_WINDOW. 

• Scrolling an MDI frame window. 

• Scrolling the MDI child windows. 

• Adding MDI children at run-time. 

• Removing MDI children at run-time. 

• Activating MDI children through the MDI frame menu. 

• Using UIW_ICONs as selectable objects. 

Design principles. The MDI application window is created with OpenZinc 
Designer, which contains a pull-down menu and three MDI child windows. 

An MDI_FRAME_WINDOW class is derived from UIW_WINDOW. It 
contains a persistent constructor to load the window. 
MDI_FRAME_WINDOW also has its own Event ( ) routine to handle 
events generated by the menu and selectable MDI children icons. 

The menu will contain options so the user can add, remove, and activate the 
child windows. The File pull down item option contains a New submenu 
item to add a new MDI child window, and Delete to delete the active MDI 
child. The window also contains a Window pull-down item that identifies 
the MDI children. When the user selects a certain window in the menu, that 
window will become current. 

MDIWIN adds scroll bars to the MDI frame window as well as the MDI 
children. The MDI child windows contain selectable UIW_ICON objects. 

306 Getting Started with OpenZinc Programming 



PERIOD Shows many of the basic OpenZinc objects on a single window to show the 
objects available in OpenZinc. 

Design. Periodic loads a window from a data file and adds it to the window 
manager. Its purpose is to display the OpenZinc objects, rather than to teach OpenZinc 
programming principles. 

TABLE Demonstrates the UIW_TABLE, UIW_TABLE_RECORD, and the 
UIW_TABLE_HEADER classes. Shows a table of sales figures and a 
UIW_STATUS_BAR to show totals. Also includes menu options for adding 
and deleting records. 

Concepts demonstrated. 

• Creating a table, table headers, and table records. 

• Controlling data and status presentation. 

• Adding and deleting records. 

• Accessing record data. 

• Using a status bar to show table information. 

• Processing menu events in a derived class's Event() function. 

Design Principles. This example derives a class named TABLE_WINDOW 
from the UIW_WINDOW base class. The TABLE_WINDOW class pro-
vides a constructor which creates the child UIW_TABLE object, as well as 
a pull-down menu and other support objects. The derived class also provides 
an Event() function which processes menu-generated events. 

This example leaves out the left, top, width, and height parameters required 
by the UIW_TABLE class constructor, because the table object uses the 
WOF_NON_FIELD_REGION flag, which causes the table to occupy the 
entire client area of the window. This example sets the columns parameter to 
one because the table contains only one column of records. Each record, 
however, contains multiple fields, which gives the table an appearance of 
multiple columns, but with each row grouped into one record. 

The table displays the data contained in up to 100 structures of type 
DATA_RECORD. Initially, however, it contains only 10 records. To accom-
plish this, recordSize is set to sizeof(DATA_RECORD), maxRecords to 100, 
records to 10, and the data for the initial 10 records is passed in the data 
parameter as an array of DATA_RECORD structures. 

Getting Started with OpenZinc Programming 307 



Example Programs 

If the table will display large amounts of data, we can set recordSize and 
maxRecords to 0 or the size of a database key, and access the data during the 
processing of the S_SET_DATA event. Using these techniques, the table can 
display an unlimited number of records. 

At any time, we only add one UIW_TABLE_RECORD object to a table or 
table header. Several fields are added to the table record, however, in order to 
display the data contained one DATA_RECORD structure. 

One table record displays all records in the table. A user function assigned to 
the table record object associates the data with the fields in the table record. 
Whenever the user function is called with a control code of S_SET_DATA 
the function sets the data from the appropriate record into the fields on the 
table record. It also sets the selected status of the table record according to 
the status in the DATA_RECORD structure. By sending the S_SET_DATA 
event multiple times, the table can use one table record to display all of the 
data in the table. 

The menu items in this example are all flagged with the 
MNIF_SEND_MESSAGE flag. This causes the menu options to generate an 
event each time they are selected. Two special events have been defined in 
this example: S_ADD_RECORD, and S_DELETE_RECORD. These events 
are processed in the table window's event function, and use the table's 
InsertRecord() and DeleteRecord() functions to perform the required 
actions. 

Whenever a table record is selected or loses focus, the user function gener-
ates a special event of type S_CALCULATE_TOTALS. The table window 
processes this event by using the table's GetRecord() event to get data from 
the table, calculating totals, and setting the results into the table's status bar. 

MSGWIN Displays a window with two data entry fields, one for dates and the other for 
strings. Giving a date to the date field and then hitting <Enter> displays a 
message window telling what day the date typed in fell on. If the user types a 
string into the string field that does not begin with 'A,' and then tries to leave 
the field, a notification window comes up. If you choose the Ignore option 
on this window then the invalid string is left. If you choose the Cancel 
option then the text is blanked out. When the user tries to close the window, 
the program verifies the user intends to exit by displaying a modal message 
window. 

308 Getting Started with OpenZinc Programming 



Concepts demonstrated. 

• Exit functions. 

• Using ZAF_MESSAGE_WINDOW. 

• Validation using user functions. 

Design principles. The Window Manager calls the exit function any time a 
user attempts to exit the application. Exit functions take three parameters, 
pointers to UI_DISPLAY, UI_EVENT_MANAGER, and UI_WIN-
DOWJMANAGER; and return an EVENT_TYPE. 

For this application we a supply an exit function to verify the user intends to 
exit, by creating a function called ExitFunction() with the parameters and 
return type described above. 

Inside of ExitFunction() we display a message window my creating a 
ZAF_MESSAGE_WINDOW and giving it the messages we want dis-
played and that we want the YES and NO buttons. Then we call the mes-
sages window's Control() function. 

If the return value from the Control() function indicates that the NO button 
was pressed then the user doesn't want to exit and we return SjCONTINUE 
to say we wish to continue with the program. Otherwise the YES button was 
pressed and we return L_EXIT saying we wish to exit. 

In UI_APPLICATION::Main() we say windowManager->exitFunction -
ExitFunction and we are all hooked up. 

Also in UI_APPLICATION::Main() we create a window with a date field, 
a string field and corresponding prompts. 

One of the parameters for the UIW_DATE field is a user function. User 
functions take three parameters, a pointer to a UI_WINDOW_OBJECT, 
the contents of UI_EVENT, and an EVENT_TYPE; and return an 
EVENT_TYPE. The user function ValidateDate() of the UIW_DATE field 
checks to see why we call the user function. If the function was called 
because the field was selected, meaning the user hit <Enter>, it gets the data 
from the date field that was passed in as the first parameter to 
ValidateDate(); it finds out what day of the week it falls on, and then cre-
ates a ZAFJV1ESSAGEJWINDOW. In order for ZAF_MESSAGE-
_WINDOW to find the icon assigned to it, we must set up 
UlJWmDOW_OKJECT::defaultStorage in UI_APPLICATION::Main(). 
The message window has an OK button so the user can dismiss it. Then the 
program calls the its Control( ) function and then exits when it returns. 

Getting Started with OpenZinc Programming 309 



Example Programs 

We also create a user function for the string field called ValidateString(), 
which checks to see if the field is noncurrent. If the field is noncurrent, the 
function checks to see if the user changed the text, and if the user did, so it 
performs the validation. If the text is invalid, it will create a 
ZAF_MESSAGE_WINDOW with a message, call its Control() function, 
and get the response. If the user chooses CANCEL, the function blanks out 
the field. Otherwise it leaves the bad text. 

After the window is created and added to the Window Manager, the program 
sets windowManager-> screenID to the window's screenID. This tells the 
Window Manager that the window is the control window. Any time the user 
tries to close that window, the Window Manager will assume the user is try-
ing to exit, so it will call the exit function. 

Once this is finished, we merely go into our control loop by calling 
UI_APPLICATION: :Main(), and let our program run. 

310 Getting Started with OpenZinc Programming 



Appendix C OpenZinc Coding 
Standards 

OpenZinc Software has an internal document that specifies standards for all code 
written for internal, as well as external, distribution. The purpose of these 
standards is to improve the readability, organization and maintenance of 
source code and header files. This document is printed in this appendix so 
that you can understand the coding standards we use when writing the exam-
ple programs, tutorial programs and source code modules you receive when 
you purchase this product. 

Getting Started with OpenZinc Programming 311 



OpenZinc Coding Standards 

Naming 

Classes and Class names should be self-explanatory and should be in upper-case letter-
structures ing, with underscores used to separate words. Some example class and struc-

ture names are shown below. 

struct UI__EVENT 

struct UI_PALETTE_MAP 

class UI_ELEMENT 
class UI_EVENT_MANAGER : public UI_LIST 

class UIW_BUTT0N : UI_WINDOW_OBJECT 

In addition, OpenZinc class names use the following prefixes 

• UI_ denotes a general user-interface class or structure. 

• UID_ denotes a device class or structure. 
• UIW_ denotes a window interface class or structure. 

Functions Functions should be self explanatory and should be in name-case format, 
such as first letter, uppercase lettering, all remaining character in lowercase 
lettering, with no underscores used to separate words. In addition, the func-
tion name should describe what the function does. 

Some example class and regular function names are shown below: 

UI_ELEMENT *Previous(void); 
EVENT__TYPE Event (const UI_EVENT seventh-
static UI_WINDOW_OBJECT *New(const char *name, 

UI_STORAGE directory, 
UI_STORAGE_OBJECT *object); 

Variables Variable names should be self-explanatory and use lowercase lettering for 
the first word, then name case for each word thereafter. Underscores should 
precede global variables. Some example variable names are shown below. 

extern UI_STORAGE *_storage; 

int UIW__BORDER: : width = 4; 

static UI_EVENT__MAP *eventMapTable; 
UI_PALETTE_MAP *paletteMapTable; 

Each variable should be declared on a separate line when it is needed by the 
function. When declaring a list of variables, the following order should be 
followed: 
1. External variables 
2. Static variables 

312 Getting Started with OpenZinc Programming 



3. Variables with complex structures 

4. All other variables according to need within the application 

In addition, only one space, and not tabs, should exist between the type and 
the 

variable. Comments should be aligned evenly after the variable list. 
Constants Constant variables should be self-explanatory and should be in uppercase 

lettering, with an underscore separating the words. 

Some example constant names are shown below: 

const int TRUE = 1; 
const int FALSE = 0; 
const WOF_NO_FLAGS WOF_NO_FLAGS = 0x0000; 

const WOF_NO_FLAGS WOF_JUSTIFY_CENTER = 0x0001; 
In addition to the information described above: 

• Constants should be placed before the definition of the class for which 
they apply, or at the beginning of the module. 

• If several related constants are defined, the definitions should be grouped 
together with a preceding comment. 

• Constant values should be tab-aligned to the right. 

• Comments for each line should be aligned to the right of the value. 

Organization 

Class scopes The class declaration in an include file should list public members first, pro-
tected members next, and private members last. Each major section should 
list static member variables first, member variables next, and member func-
tions last, listed in alphabetical order. (Be sure to list the constructor and 
destructor first.) In addition, each scope section should contain a short com-
ment telling where its members are documented. The following example 
shows a class containing the three scope sections: 

Class EXPORT UI_TIME : public UI_INTERNATIONAL { 

public: 
static char *amPtr; 

Getting Started with OpenZinc Programming 313 



OpenZinc Coding Standards 

static char *pmPtr; 
UI_TIME (void); 
virtual ~UI_TIME(void); 

void Export(char *string, TMF_FLAGS tmFlags); 

long operator=(long hundredths); 
private: 

long value; 
}; 

Files Source code modules that contain class member functions should contain the 
copyright notice, LGPL information, then any include files, static member variables, and mem-
ber functions, described in alphabetical order. An example of BORDER.CPP's file layout is shown below: 

//OpenZinc Application Framework - BORDER.CPP 
//COPYRIGHT (C) 1990-1993. All Rights Reserved. 
//OpenZinc Software Incorporated. Pleasant Grove, Utah USA 
// LGPL information here 
#include "ui_win.hpp" 
#include <string.h> 
int UIW_BORDER::width = 4; 
UIW_BORDER::UIW_BORDER(void) : 

UI_WINDOW_OBJECT(0, 0, 0, 0, WOF_NON_FIELD_REGION, 
WOAF_NON_CURRENT) 

UIW_BORDER::~UIW_BORDER(void) 

EVENT_TYPE UIW_BORDER::Event(const UI_EVENT &event) 

314 Getting Started with OpenZinc Programming 



Comments 

Files 

Functions 

Variables 

Each source file (.CPP or .HPP) should contain a three-line comment that 
contains the library or program name, the name of the file and copyright 
information. A sample header is shown below: 

//OpenZinc Application Framework - BUTTON.CPP 
//COPYRIGHT (C) 1990-1993. All Rights Reserved. 
//OpenZinc Software Incorporated. Pleasant Grove, Utah USA 

The copyright information should be copied as shown above. The copyright 
year should include the original year when the product was created and all 
subsequent years when major revisions were made. 
This section is followed by LGPL information 
Each routine may be preceded by a short description giving the routine's pur-
pose and any related algorithms. If the routine name intuitively describes the 
routine, no comment is needed. The example below shows the use of a func-
tion comment: 

// This member function displays the biorhythm information in 

// the window. As the size of the window object changes (by 

// changing the parent window) 
// the size of the biorhythm chart also changes. A horizontal 

// change results in a change in the number of days displayed.A 

// vertical change results in a dynamic change in the height of 

// the biorhythm curve. 
void BIORHYTHM::UpdateBiorhythm() { 

} 
Function arguments and local variables should only have descriptive com-
ments if their names are not descriptive. These comments should be lined up 
on a right tab region. In addition, all comments should start with a capital let-
ter and be followed by a period. An example of two variable declarations is 
shown below. 

EVENT_TYPE ccode; 
// The control code for an event, 

int cardFile; 
// File handle for the disk file. Blocks Block comments are used to describe a group of related code. Most block 

comments should be one line, if possible, and reside immediately above the 
block being commented. If more than a one line comment is needed, the 
extra lines should each begin with the double slash. 

Getting Started with OpenZinc Programming 315 



OpenZinc Coding Standards 

Block comments should be indented to match the indentation of the line of 
code following it. A single blank line should precede the comment and the 
block of code should follow immediately after. Small blocks of code that do 
a specific job should be commented but not individual lines, unless the line 
is complex or not intuitive). Some example block comments are shown 
below. 

// Destroy all of the items within the list. 

Destroy(); 

// When the user selects a button from the current window, ccode 

// is checked to see what type of event was received. 
switch (ccode) 
{ 

} 

Indentation 

Classes and Structures and classes should have all members listed on individual lines and 
structures should be indented with one tab from the left margin. Several sample inden-

tations are shown below: 

class EXPORT UI_DEVICE : public UI_ELEMENT 
{ 

friend class EXPORT UI_EVENT_MANAGER; 

public: 
static ALT_STATE altState; 
static UI_DISPLAY *display; 
static UI_EVENT_MANAGER ^eventManager; 
int installed; 

DEVICE_TYPE type; 

DEVICE_STATE state; 
virtual ~UI_DEVICE(void); 
virtual EVENT_TYPE Event(const UI_EVENT &event) = 0; 

// List members. 

UI_DEVICE *Next(void); 

UI_DEVICE *Previous(void); 

316 Getting Started with OpenZinc Programming 



protected: 
UI_DEVICE(DEVICE_TYPE _type, DEVICE_STATE _state); 

static int CompareDevices(void *devicel, void *device2); 
virtual void Poll(void) = 0; 

}; 

Functions The main body of routines should have braces below the function declara-
tion. All function code should be indented one tab. An example of this 
indentation is shown below: 

void UIW_BUTTON::DataSet(const char *string) 
{ 

// Reset the button's string information. 
} 

Getting Started with OpenZinc Programming 317 

Function calls Parameters in a function call should be listed with each argument, followed 
by a comma and one space. If a routine call cannot fit on one line on the 
screen, it should be broken with the next half of the call indented one tab far-
ther over. It should be split after a comma or logic symbol if possible. Sev-
eral examples of this calling convention are shown below: 



OpenZinc Coding Standards 

3 1 8 Getting Started with OpenZinc Programming 



A p p e n d i x D Keyboard and 
Mouse Mappings 

This appendix lists all the default keyboard mappings OpenZinc supports, organized by 
operating environment. 

Getting Started with OpenZinc Programming 3 1 9 



Keyboard and Mouse Mappings 

DOS and Windows 

TABLE 1. DOS and Windows keyboard mappings 

320 Getting Started with OpenZinc Programming 



TABLE 1. DOS and Windows keyboard mappings 

Getting Started with OpenZinc Programming 321 



Keyboard and Mouse Mappings 

TABLE 1. DOS and Windows keyboard mappings 

322 Getting Started with OpenZinc Programming 



TABLE 2 . D O S a n d W i n d o w s m o u s e m a p p i n g s 

OSF/Motif and Curses 
OSF/Motif uses user-definable "soft" mappings to map actions to the keyboard and mouse. 

Curses keyboard mappings differ significantly from other OpenZinc-supported operating environment. For example, 
many terminals supported by Curses define few or no regular function keys. Curses does not support an <Alt> or 
<meta> key, and you may not be able to use <Ctrl> and <Shift> keys with any function keys or keys like <pgup>, 
<end>, or <tab>. 

On the other hand, some terminals used supported by Curses have specialized keys for actions such as cut, paste, 
restore, or cancel. If a terminal does not have these, modify the terminfo database entry to create mappings from 
existing keys to the required functions. By default, OpenZinc maps special Curses function keys to OpenZinc events. These 
special Curses function keys include KEY_ENTER, KEY_NPAGE, KEY_BTAB, KEY_CANCEL, KEY_MARK. 
Additionally, <Alt>, <Ctrl>, and <Shift> keys are not used, and hot key sequences are preceded by <Esc> rather 
than <Alt>. OpenZinc's default keyboard mapping allows <Ctrl> key combinations for many events, shown in the fol-
lowing table. 

Getting Started with OpenZinc Programming 323 



Keyboard and Mouse Mappings 

If desired, OpenZinc provides a mode somewhat compatible with the PC keyboard that uses surrogate <Alt> and <Ctrl> 
keys with <F1> through <F10>. In this mode, the 'v ' key is the alt key, and is used as the <Ctrl> key. Pressing a 
surrogate key followed by another key causes OpenZinc to recognize an <Alt> or <Ctrl> sequence. Pressing a surrogate 
key twice causes the key to be recognized as normal. So instead of pressing Curses's KEY_SCANCEL to close a 
window, a user could press 'Y followed by <F4>. Select this mode at compile time by using the ZIL_PC_KEYBRD 
preprocessor flag. 

324 Getting Started with OpenZinc Programming 



Macintosh 

Getting Started with OpenZinc Programming 325 



Keyboard and Mouse Mappings 

326 Getting Started with OpenZinc Programming 



TABLE 6. N E X T S T E P keyboard mappings 

Getting Started with OpenZinc Programming 327 



Keyboard and Mouse Mappings 

328 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 329 



330 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 331 



332 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 333 



334 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 335 



336 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 337 



338 Getting Started with OpenZinc Programming 



Getting Started with OpenZinc Programming 339 



340 Getting Started with OpenZinc Programming 



                GNU Free Documentation License 
                 Version 1.3, 3 November 2008 
 
 
 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, 
Inc. 
     <http://fsf.org/> 
 Everyone is permitted to copy and distribute verbatim copies 
 of this license document, but changing it is not allowed. 
 
0. PREAMBLE 
 
The purpose of this License is to make a manual, textbook, or other 
functional and useful document "free" in the sense of freedom: to 
assure everyone the effective freedom to copy and redistribute it, 
with or without modifying it, either commercially or noncommercially. 
Secondarily, this License preserves for the author and publisher a way 
to get credit for their work, while not being considered responsible 
for modifications made by others. 
 
This License is a kind of "copyleft", which means that derivative 
works of the document must themselves be free in the same sense.  It 
complements the GNU General Public License, which is a copyleft 
license designed for free software. 
 
We have designed this License in order to use it for manuals for free 
software, because free software needs free documentation: a free 
program should come with manuals providing the same freedoms that the 
software does.  But this License is not limited to software manuals; 
it can be used for any textual work, regardless of subject matter or 
whether it is published as a printed book.  We recommend this License 
principally for works whose purpose is instruction or reference. 
 
 
1. APPLICABILITY AND DEFINITIONS 
 
This License applies to any manual or other work, in any medium, that 
contains a notice placed by the copyright holder saying it can be 
distributed under the terms of this License.  Such a notice grants a 
world-wide, royalty-free license, unlimited in duration, to use that 
work under the conditions stated herein.  The "Document", below, 
refers to any such manual or work.  Any member of the public is a 
licensee, and is addressed as "you".  You accept the license if you 
copy, modify or distribute the work in a way requiring permission 
under copyright law. 
 
A "Modified Version" of the Document means any work containing the 
Document or a portion of it, either copied verbatim, or with 
modifications and/or translated into another language. 
 
A "Secondary Section" is a named appendix or a front-matter section of 
the Document that deals exclusively with the relationship of the 
publishers or authors of the Document to the Document's overall 
subject (or to related matters) and contains nothing that could fall 
directly within that overall subject.  (Thus, if the Document is in 
part a textbook of mathematics, a Secondary Section may not explain 
any mathematics.)  The relationship could be a matter of historical 



connection with the subject or with related matters, or of legal, 
commercial, philosophical, ethical or political position regarding 
them. 
 
The "Invariant Sections" are certain Secondary Sections whose titles 
are designated, as being those of Invariant Sections, in the notice 
that says that the Document is released under this License.  If a 
section does not fit the above definition of Secondary then it is not 
allowed to be designated as Invariant.  The Document may contain zero 
Invariant Sections.  If the Document does not identify any Invariant 
Sections then there are none. 
 
The "Cover Texts" are certain short passages of text that are listed, 
as Front-Cover Texts or Back-Cover Texts, in the notice that says that 
the Document is released under this License.  A Front-Cover Text may 
be at most 5 words, and a Back-Cover Text may be at most 25 words. 
 
A "Transparent" copy of the Document means a machine-readable copy, 
represented in a format whose specification is available to the 
general public, that is suitable for revising the document 
straightforwardly with generic text editors or (for images composed of 
pixels) generic paint programs or (for drawings) some widely available 
drawing editor, and that is suitable for input to text formatters or 
for automatic translation to a variety of formats suitable for input 
to text formatters.  A copy made in an otherwise Transparent file 
format whose markup, or absence of markup, has been arranged to thwart 
or discourage subsequent modification by readers is not Transparent. 
An image format is not Transparent if used for any substantial amount 
of text.  A copy that is not "Transparent" is called "Opaque". 
 
Examples of suitable formats for Transparent copies include plain 
ASCII without markup, Texinfo input format, LaTeX input format, SGML 
or XML using a publicly available DTD, and standard-conforming simple 
HTML, PostScript or PDF designed for human modification.  Examples of 
transparent image formats include PNG, XCF and JPG.  Opaque formats 
include proprietary formats that can be read and edited only by 
proprietary word processors, SGML or XML for which the DTD and/or 
processing tools are not generally available, and the 
machine-generated HTML, PostScript or PDF produced by some word 
processors for output purposes only. 
 
The "Title Page" means, for a printed book, the title page itself, 
plus such following pages as are needed to hold, legibly, the material 
this License requires to appear in the title page.  For works in 
formats which do not have any title page as such, "Title Page" means 
the text near the most prominent appearance of the work's title, 
preceding the beginning of the body of the text. 
 
The "publisher" means any person or entity that distributes copies of 
the Document to the public. 
 
A section "Entitled XYZ" means a named subunit of the Document whose 
title either is precisely XYZ or contains XYZ in parentheses following 
text that translates XYZ in another language.  (Here XYZ stands for a 
specific section name mentioned below, such as "Acknowledgements", 
"Dedications", "Endorsements", or "History".)  To "Preserve the Title" 
of such a section when you modify the Document means that it remains a 



section "Entitled XYZ" according to this definition. 
 
The Document may include Warranty Disclaimers next to the notice which 
states that this License applies to the Document.  These Warranty 
Disclaimers are considered to be included by reference in this 
License, but only as regards disclaiming warranties: any other 
implication that these Warranty Disclaimers may have is void and has 
no effect on the meaning of this License. 
 
2. VERBATIM COPYING 
 
You may copy and distribute the Document in any medium, either 
commercially or noncommercially, provided that this License, the 
copyright notices, and the license notice saying this License applies 
to the Document are reproduced in all copies, and that you add no 
other conditions whatsoever to those of this License.  You may not use 
technical measures to obstruct or control the reading or further 
copying of the copies you make or distribute.  However, you may accept 
compensation in exchange for copies.  If you distribute a large enough 
number of copies you must also follow the conditions in section 3. 
 
You may also lend copies, under the same conditions stated above, and 
you may publicly display copies. 
 
 
3. COPYING IN QUANTITY 
 
If you publish printed copies (or copies in media that commonly have 
printed covers) of the Document, numbering more than 100, and the 
Document's license notice requires Cover Texts, you must enclose the 
copies in covers that carry, clearly and legibly, all these Cover 
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on 
the back cover.  Both covers must also clearly and legibly identify 
you as the publisher of these copies.  The front cover must present 
the full title with all words of the title equally prominent and 
visible.  You may add other material on the covers in addition. 
Copying with changes limited to the covers, as long as they preserve 
the title of the Document and satisfy these conditions, can be treated 
as verbatim copying in other respects. 
 
If the required texts for either cover are too voluminous to fit 
legibly, you should put the first ones listed (as many as fit 
reasonably) on the actual cover, and continue the rest onto adjacent 
pages. 
 
If you publish or distribute Opaque copies of the Document numbering 
more than 100, you must either include a machine-readable Transparent 
copy along with each Opaque copy, or state in or with each Opaque copy 
a computer-network location from which the general network-using 
public has access to download using public-standard network protocols 
a complete Transparent copy of the Document, free of added material. 
If you use the latter option, you must take reasonably prudent steps, 
when you begin distribution of Opaque copies in quantity, to ensure 
that this Transparent copy will remain thus accessible at the stated 
location until at least one year after the last time you distribute an 
Opaque copy (directly or through your agents or retailers) of that 
edition to the public. 



 
It is requested, but not required, that you contact the authors of the 
Document well before redistributing any large number of copies, to 
give them a chance to provide you with an updated version of the 
Document. 
 
 
4. MODIFICATIONS 
 
You may copy and distribute a Modified Version of the Document under 
the conditions of sections 2 and 3 above, provided that you release 
the Modified Version under precisely this License, with the Modified 
Version filling the role of the Document, thus licensing distribution 
and modification of the Modified Version to whoever possesses a copy 
of it.  In addition, you must do these things in the Modified Version: 
 
A. Use in the Title Page (and on the covers, if any) a title distinct 
   from that of the Document, and from those of previous versions 
   (which should, if there were any, be listed in the History section 
   of the Document).  You may use the same title as a previous version 
   if the original publisher of that version gives permission. 
B. List on the Title Page, as authors, one or more persons or entities 
   responsible for authorship of the modifications in the Modified 
   Version, together with at least five of the principal authors of the 
   Document (all of its principal authors, if it has fewer than five), 
   unless they release you from this requirement. 
C. State on the Title page the name of the publisher of the 
   Modified Version, as the publisher. 
D. Preserve all the copyright notices of the Document. 
E. Add an appropriate copyright notice for your modifications 
   adjacent to the other copyright notices. 
F. Include, immediately after the copyright notices, a license notice 
   giving the public permission to use the Modified Version under the 
   terms of this License, in the form shown in the Addendum below. 
G. Preserve in that license notice the full lists of Invariant Sections 
   and required Cover Texts given in the Document's license notice. 
H. Include an unaltered copy of this License. 
I. Preserve the section Entitled "History", Preserve its Title, and add 
   to it an item stating at least the title, year, new authors, and 
   publisher of the Modified Version as given on the Title Page.  If 
   there is no section Entitled "History" in the Document, create one 
   stating the title, year, authors, and publisher of the Document as 
   given on its Title Page, then add an item describing the Modified 
   Version as stated in the previous sentence. 
J. Preserve the network location, if any, given in the Document for 
   public access to a Transparent copy of the Document, and likewise 
   the network locations given in the Document for previous versions 
   it was based on.  These may be placed in the "History" section. 
   You may omit a network location for a work that was published at 
   least four years before the Document itself, or if the original 
   publisher of the version it refers to gives permission. 
K. For any section Entitled "Acknowledgements" or "Dedications", 
   Preserve the Title of the section, and preserve in the section all 
   the substance and tone of each of the contributor acknowledgements 
   and/or dedications given therein. 
L. Preserve all the Invariant Sections of the Document, 
   unaltered in their text and in their titles.  Section numbers 



   or the equivalent are not considered part of the section titles. 
M. Delete any section Entitled "Endorsements".  Such a section 
   may not be included in the Modified Version. 
N. Do not retitle any existing section to be Entitled "Endorsements" 
   or to conflict in title with any Invariant Section. 
O. Preserve any Warranty Disclaimers. 
 
If the Modified Version includes new front-matter sections or 
appendices that qualify as Secondary Sections and contain no material 
copied from the Document, you may at your option designate some or all 
of these sections as invariant.  To do this, add their titles to the 
list of Invariant Sections in the Modified Version's license notice. 
These titles must be distinct from any other section titles. 
 
You may add a section Entitled "Endorsements", provided it contains 
nothing but endorsements of your Modified Version by various 
parties--for example, statements of peer review or that the text has 
been approved by an organization as the authoritative definition of a 
standard. 
 
You may add a passage of up to five words as a Front-Cover Text, and a 
passage of up to 25 words as a Back-Cover Text, to the end of the list 
of Cover Texts in the Modified Version.  Only one passage of 
Front-Cover Text and one of Back-Cover Text may be added by (or 
through arrangements made by) any one entity.  If the Document already 
includes a cover text for the same cover, previously added by you or 
by arrangement made by the same entity you are acting on behalf of, 
you may not add another; but you may replace the old one, on explicit 
permission from the previous publisher that added the old one. 
 
The author(s) and publisher(s) of the Document do not by this License 
give permission to use their names for publicity for or to assert or 
imply endorsement of any Modified Version. 
 
 
5. COMBINING DOCUMENTS 
 
You may combine the Document with other documents released under this 
License, under the terms defined in section 4 above for modified 
versions, provided that you include in the combination all of the 
Invariant Sections of all of the original documents, unmodified, and 
list them all as Invariant Sections of your combined work in its 
license notice, and that you preserve all their Warranty Disclaimers. 
 
The combined work need only contain one copy of this License, and 
multiple identical Invariant Sections may be replaced with a single 
copy.  If there are multiple Invariant Sections with the same name but 
different contents, make the title of each such section unique by 
adding at the end of it, in parentheses, the name of the original 
author or publisher of that section if known, or else a unique number. 
Make the same adjustment to the section titles in the list of 
Invariant Sections in the license notice of the combined work. 
 
In the combination, you must combine any sections Entitled "History" 
in the various original documents, forming one section Entitled 
"History"; likewise combine any sections Entitled "Acknowledgements", 
and any sections Entitled "Dedications".  You must delete all sections 



Entitled "Endorsements". 
 
 
6. COLLECTIONS OF DOCUMENTS 
 
You may make a collection consisting of the Document and other 
documents released under this License, and replace the individual 
copies of this License in the various documents with a single copy 
that is included in the collection, provided that you follow the rules 
of this License for verbatim copying of each of the documents in all 
other respects. 
 
You may extract a single document from such a collection, and 
distribute it individually under this License, provided you insert a 
copy of this License into the extracted document, and follow this 
License in all other respects regarding verbatim copying of that 
document. 
 
 
7. AGGREGATION WITH INDEPENDENT WORKS 
 
A compilation of the Document or its derivatives with other separate 
and independent documents or works, in or on a volume of a storage or 
distribution medium, is called an "aggregate" if the copyright 
resulting from the compilation is not used to limit the legal rights 
of the compilation's users beyond what the individual works permit. 
When the Document is included in an aggregate, this License does not 
apply to the other works in the aggregate which are not themselves 
derivative works of the Document. 
 
If the Cover Text requirement of section 3 is applicable to these 
copies of the Document, then if the Document is less than one half of 
the entire aggregate, the Document's Cover Texts may be placed on 
covers that bracket the Document within the aggregate, or the 
electronic equivalent of covers if the Document is in electronic form. 
Otherwise they must appear on printed covers that bracket the whole 
aggregate. 
 
 
8. TRANSLATION 
 
Translation is considered a kind of modification, so you may 
distribute translations of the Document under the terms of section 4. 
Replacing Invariant Sections with translations requires special 
permission from their copyright holders, but you may include 
translations of some or all Invariant Sections in addition to the 
original versions of these Invariant Sections.  You may include a 
translation of this License, and all the license notices in the 
Document, and any Warranty Disclaimers, provided that you also include 
the original English version of this License and the original versions 
of those notices and disclaimers.  In case of a disagreement between 
the translation and the original version of this License or a notice 
or disclaimer, the original version will prevail. 
 
If a section in the Document is Entitled "Acknowledgements", 
"Dedications", or "History", the requirement (section 4) to Preserve 
its Title (section 1) will typically require changing the actual 



title. 
 
 
9. TERMINATION 
 
You may not copy, modify, sublicense, or distribute the Document 
except as expressly provided under this License.  Any attempt 
otherwise to copy, modify, sublicense, or distribute it is void, and 
will automatically terminate your rights under this License. 
 
However, if you cease all violation of this License, then your license 
from a particular copyright holder is reinstated (a) provisionally, 
unless and until the copyright holder explicitly and finally 
terminates your license, and (b) permanently, if the copyright holder 
fails to notify you of the violation by some reasonable means prior to 
60 days after the cessation. 
 
Moreover, your license from a particular copyright holder is 
reinstated permanently if the copyright holder notifies you of the 
violation by some reasonable means, this is the first time you have 
received notice of violation of this License (for any work) from that 
copyright holder, and you cure the violation prior to 30 days after 
your receipt of the notice. 
 
Termination of your rights under this section does not terminate the 
licenses of parties who have received copies or rights from you under 
this License.  If your rights have been terminated and not permanently 
reinstated, receipt of a copy of some or all of the same material does 
not give you any rights to use it. 
 
 
10. FUTURE REVISIONS OF THIS LICENSE 
 
The Free Software Foundation may publish new, revised versions of the 
GNU Free Documentation License from time to time.  Such new versions 
will be similar in spirit to the present version, but may differ in 
detail to address new problems or concerns.  See 
http://www.gnu.org/copyleft/. 
 
Each version of the License is given a distinguishing version number. 
If the Document specifies that a particular numbered version of this 
License "or any later version" applies to it, you have the option of 
following the terms and conditions either of that specified version or 
of any later version that has been published (not as a draft) by the 
Free Software Foundation.  If the Document does not specify a version 
number of this License, you may choose any version ever published (not 
as a draft) by the Free Software Foundation.  If the Document 
specifies that a proxy can decide which future versions of this 
License can be used, that proxy's public statement of acceptance of a 
version permanently authorizes you to choose that version for the 
Document. 
 
11. RELICENSING 
 
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any 
World Wide Web server that publishes copyrightable works and also 
provides prominent facilities for anybody to edit those works.  A 



public wiki that anybody can edit is an example of such a server.  A 
"Massive Multiauthor Collaboration" (or "MMC") contained in the site 
means any set of copyrightable works thus published on the MMC site. 
 
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0  
license published by Creative Commons Corporation, a not-for-profit  
corporation with a principal place of business in San Francisco,  
California, as well as future copyleft versions of that license  
published by that same organization. 
 
"Incorporate" means to publish or republish a Document, in whole or in  
part, as part of another Document. 
 
An MMC is "eligible for relicensing" if it is licensed under this  
License, and if all works that were first published under this License  
somewhere other than this MMC, and subsequently incorporated in whole 
or  
in part into the MMC, (1) had no cover texts or invariant sections, and  
(2) were thus incorporated prior to November 1, 2008. 
 
The operator of an MMC Site may republish an MMC contained in the site 
under CC-BY-SA on the same site at any time before August 1, 2009, 
provided the MMC is eligible for relicensing. 




